Page 11 of 14
Journal of the American Chemical Society
(18) Zhu, Q.; Wang, G.; Liu, J.; Su, L.; Li, C. Effect of Sn on
Ltd, Thailand for funding. This work used the ARCHER UK Na-
Isobutane Dehydrogenation Performance of Ni/SiO2 Catalyst:
Adsorption Modes and Adsorption Energies of Isobutane and
Isobutene. ACS App. Mat. Interface. 2017, 9, 30711-30721.
(19) Calladine, J. A.; Duckett, S. B.; George, M. W.; Matthews,
S. L.; Perutz, R. N.; Torres, O.; Vuong, K. Q. Manganese Alkane
Complexes: An IR and NMR Spectroscopic Investigation. J. Am.
Chem. Soc 2011, 133, 2303-2310.
(20) Bernskoetter, W. H.; Schauer, C. K.; Goldberg, K. I.;
Brookhart, M. Characterization of a Rhodium(I) -Methane Complex in
Solution. Science 2009, 326, 553-556.
(21) Walter, M. D.; White, P. S.; Schauer, C. K.; Brookhart, M.
Stability and Dynamic Processes in 16ve Iridium(III) Ethyl Hydride
and Rhodium(I) s-Ethane Complexes: Experimental and
Computational Studies. J. Am. Chem. Soc. 2013, 135, 15933-15947.
(22) Yau, H. M.; McKay, A. I.; Hesse, H.; Xu, R.; He, M.; Holt,
C. E.; Ball, G. E. Observation of Cationic Transition Metal-Alkane
Complexes with Moderate Stability in Hydrofluorocarbon Solution. J.
Am. Chem. Soc. 2016, 138, 281-288.
(23) Gonzalez, M. I.; Mason, J. A.; Bloch, E. D.; Teat, S. J.;
Gagnon, K. J.; Morrison, G. Y.; Queen, W. L.; Long, J. R. Structural
Characterization of Framework–Gas Interactions in the Metal–Organic
Framework Co2(Dobdc) by in Situ Single-Crystal X-Ray Diffraction.
Chem. Sci. 2017, 8, 4387-4398.
1
2
3
4
5
6
7
8
rus.ac.uk) funded by the University of Edinburgh and EPSRC
(EP/P020267/1). We thank Dr Graham Tizzard (UK National Crys-
tallographic Service) for data collection on [1–C6H8][BArF ], and
4
Dr Hamish Yeung for valuable discussions in solid–state kinetics.
REFERENCES
(1)
Functionalization of Alkanes. Acc. Chem. Res. 2017, 50, 620-626.
(2) Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.;
Goldberg, K. I.; Goldman, A. S. Large-Scale Selective
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Weckhuysen, B. M. Catalytic Dehydrogenation of Light Alkanes on
Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613-10653.
(3)
Number 69, ; Linstron, P. J.; Mallard, W. G., Eds.; National Institute of
Standards and Technol.ogy: Gaithersburg MD, 20899,
(4) Searles, K.; Chan, K. W.; Mendes Burak, J. A.; Zemlyanov,
D.; Safonova, O.; Copéret, C. Highly Productive Propane
Dehydrogenation Catalyst Using Silica-Supported Ga–Pt
Nist Chemistry Webbook, Nist Standard Reference Database
Nanoparticles Generated from Single-Sites. J. Am. Chem. Soc. 2018,
140, 11674-11679.
(5)
Kumar, A.; Bhatti, T. M.; Goldman, A. S. Dehydrogenation
(24) Asplund, M. C.; Snee, P. T.; Yeston, J. S.; Wilkens, M. J.;
Payne, C. K.; Yang, H.; Kotz, K. T.; Frei, H.; Bergman, R. G.; Harris,
C. B. Ultrafast UV Pump/IR Probe Studies of C−H Activation in
Linear, Cyclic, and Aryl Hydrocarbons. J. Am. Chem. Soc. 2002, 124,
10605-10612.
(25) Guan, J.; Wriglesworth, A.; Sun, X. Z.; Brothers, E. N.;
Zarić, S. D.; Evans, M. E.; Jones, W. D.; Towrie, M.; Hall, M. B.;
George, M. W. Probing the Carbon–Hydrogen Activation of Alkanes
of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes.
Chem. Rev. 2017, 117, 12357-12384.
(6)
Burk, M. J.; Crabtree, R. H. Selective Catalytic
Dehydrogenation of Alkanes to Alkenes. J. Am. Chem. Soc. 1987, 109,
8025-8032.
(7)
Zhou, X.; Malakar, S.; Zhou, T.; Murugesan, S.; Huang, C.;
Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Catalytic Alkane
Transfer Dehydrogenation by PSP-Pincer-Ligated Ruthenium.
Deactivation of an Extremely Reactive Fragment by Formation of Allyl
Hydride Complexes. ACS Cat. 2019, 9, 4072-4083.
Following
Photolysis
of
Tp′Rh(CNR)(Carbodiimide):
A
Computational and Time-Resolved Infrared Spectroscopic Study. J.
Am. Chem. Soc. 2018, 140, 1842-1854.
(8)
Solowey, D. P.; Mane, M. V.; Kurogi, T.; Carroll, P. J.;
(26) Bengali, A. A.; Schultz, R. H.; Moore, C. B.; Bergman, R.
G. Activation of the C-H Bonds in Neopentane and Neopentane-D12
by (h5-C5(CH3)5)Rh(CO)2: Spectroscopic and Temporal Resolution of
Rhodium-Krypton and Rhodium-Alkane Complex Intermediates. J.
Am. Chem. Soc. 1994, 116, 9585-9589.
(27) Chen, G. S.; Labinger, J. A.; Bercaw, J. E. The Role of
Alkane Coordination in C–H Bond Cleavage at a Pt(II) Center. Proc.
Nat. Acad. (USA) 2007, 104, 6915-6920.
(28) Najafian, A.; Cundari, T. R. C–H Activation of Methane by
Nickel–Methoxide Complexes: A Density Functional Theory Study.
Organometallics 2018, 37, 3111-3121.
(29) McNamara, B. K.; Yeston, J. S.; Bergman, R. G.; Moore, C.
B. The Effect of Alkane Structure on Rates of Photoinduced C−H Bond
Activation by Cp*Rh(CO)2 in Liquid Rare Gas Media:ꢀ An Infrared
Flash Kinetics Study. J. Am. Chem. Soc. 1999, 121, 6437-6443.
(30) Sattler, A. Hydrogen/Deuterium (H/D) Exchange Catalysis
in Alkanes. ACS Cat. 2018, 8, 2296-2312.
(31) For intramolecular, agostic, sigma interactions alkyl
dehydrogenation can be rather straightfoward. See, for example:
Chaplin, A. B.; Poblador-Bahamonde, A. I.; Sparkes, H. A.; Howard,
J. A. K.; Macgregor, S. A.; Weller, A. S. Alkyl dehydrogenation in a
Rh(I) complex via an isolated agostic intermediate Chem. Commun.
2009, 244-246
(32) Wasserman, E. P.; Moore, C. B.; Bergman, R. G. Gas-Phase
Rates of Alkane C-H Oxidative Addition to a Transient CpRh(CO)
Complex. Science 1992, 255, 315-318.
(33) Schultz, R. H.; Bengali, A. A.; Tauber, M. J.; Weiller, B. H.;
Wasserman, E. P.; Kyle, K. R.; Moore, C. B.; Bergman, R. G. Ir Flash
Kinetic Spectroscopy of C-H Bond Activation of Cyclohexane-D0 and
-D12 by Cp*Rh(CO)2 in Liquid Rare Gases: Kinetics,
Thermodynamics, and Unusual Isotope Effect. J. Am. Chem. Soc. 1994,
116, 7369-7377.
(34) Crestani, M. G.; Hickey, A. K.; Gao, X.; Pinter, B.;
Cavaliere, V. N.; Ito, J.-I.; Chen, C.-H.; Mindiola, D. J. Room
Temperature Dehydrogenation of Ethane, Propane, Linear Alkanes
Manor, B. C.; Baik, M.-H.; Mindiola, D. J. A New and Selective Cycle
for Dehydrogenation of Linear and Cyclic Alkanes under Mild
Conditions Using a Base Metal. Nat. Chem. 2017, 9, 1126.
(9)
Dehydrogenation
Carbonylchlorobis(Trimethylphosphine)Rhodium:
Maguire, J. A.; Boese, W. T.; Goldman, A. S. Photochemical
of
Alkanes
Catalyzed
by
Trans-
of
Aspects
Selectivity and Mechanism. J. Am. Chem. Soc. 1989, 111, 7088-7093.
(10) Chowdhury, A. D.; Julis, J.; Grabow, K.; Hannebauer, B.;
Bentrup, U.; Adam, M.; Franke, R.; Jackstell, R.; Beller, M.
Photocatalytic Acceptorless Alkane Dehydrogenation: Scope,
Mechanism, and Conquering Deactivation with Carbon Dioxide.
ChemSusChem 2014, 8, 323-330.
(11) Rábay, B.; Braun, T.; Falkenhagen, J. P. Photolytic C–H
Activation and Dehydrogenation of Alkanes at Cyclopentadienyl
Iridium Complexes in a Perfluorinated Solvent. Dalton Trans. 2013,
42, 8058-8065.
(12) Xu, W.-W.; P. Rosini, G.; Krogh-Jespersen, K.; S. Goldman,
A.; Gupta, M.; M. Jensen, C.; C. Kaska, W. Thermochemical Alkane
Dehydrogenation Catalyzed in Solution without the Use of a Hydrogen
Acceptor. Chem. Commun. 1997, 2273-2274.
(13) Aoki, T.; Crabtree, R. H. Homogeneous Tungsten, Rhenium,
and Iridium Catalysts in Alkane Dehydrogenation Driven by Reflux of
Substrate or of Cosolvent or by Inert-Gas Flow. Organometallics 1993,
12, 294-298.
(14) Zhu, K.; Achord, P. D.; Zhang, X.; Krogh-Jespersen, K.;
Goldman, A. S. Highly Effective Pincer-Ligated Iridium Catalysts for
Alkane Dehydrogenation. DFT Calculations of Relevant
Thermodynamic, Kinetic, and Spectroscopic Properties. J. Am. Chem.
Soc. 2004, 126, 13044-13053.
(15) Hartwig, J. F. Organotransition Metal Chemistry;
University Science Books: Sausalito, USA, 2010.
(16) Weller, A. S.; Chadwick, F. M.; McKay, A. I. Transition
Metal Alkane-Sigma Complexes. Adv. Organomet. Chem. 2016, 66,
223-276.
(17) Bergman, R. G. C–H Activation. Nature 2007, 446, 391.
11
ACS Paragon Plus Environment