Communications
autoclave with argon, degassed CH2Cl2 (2.0 mL)was added. The
53.5 ppm (dd, JP-P = 5.3, 45.0 Hz, 1P); S,S: d = À 11.5 (d, JP-P
=
solution was stirred for 24 h at room temperature, and then
concentrated under reduced pressure. The autoclave was again
charged with an argon atmosphere, and 2-propanol (3.3 mL)and
KOH/2-propanol (0.5m; 48 mL, 0.024 mmol)was added under a
stream of argon. The mixture was stirred for 30 min at room
temperature. 1’-Acetonaphthone (0.46 mL, 3.0 mmol)was added
under a stream of argon, and hydrogen was then introduced at a
pressure of 8 atm. The reaction mixture was vigorously stirred for 6 h
at room temperature. After concentration under reduced pressure,
the residue was filtered through a short column of silica gel. The yield
and ee values were determined by chiral GC analysis. The product was
isolated by column chromatography on silica gel (hexane/EtOAc 3:1)
in 99% yield; GC (column: CP-Cyclodextrin-b-2,3,6-M-19, i.d.
0.25 mm 25 m, CHROMPACK; carrier gas: nitrogen 75 kPa;
column temperature: 1608C; injection and detection temperature:
1908C; split ratio: 100:1): tR (S isomer) = 31.6 min, tR (R isomer) =
32.5 min.
5.3 Hz, 1P), 50.3 (d, JP-P = 42.8 Hz, 1P), 52.1 ppm (dd, JP-P = 5.3,
42.8 Hz, 1P).
[10] a)K. Mikami, T. Korenaga, T. Ohkuma, R. Noyori, Angew.
Chem. 2000, 112, 3854 – 3857; Angew. Chem. Int. Ed. 2000, 39,
3707 – 3710; b)K. Mikami, Y. Yusa, T. Korenaga, Org. Lett. 2002,
4, 1643 – 1645.
[11] [(S)-triphos–Ru–(S)-dm-dabn]: 31P NMR (162 MHz, CDCl3):
d = À 11.3 (d, JP-P = 6.2 Hz, 1P), 44.6 (d, JP-P = 39.7 Hz, 1P),
47.7 ppm (dd, JP-P = 6.2, 39.7 Hz, 1P).
[12] Hydrogenation with enantiopure [binap–Ru–dpen]: a)for an
excellent review, see: R. Noyori, T. Ohkuma, Angew. Chem.
2001, 113, 40 – 75; Angew. Chem. Int. Ed. 2001, 40, 40 – 73; see
also: b)T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya, R.
Noyori, J. Am. Chem. Soc. 1995, 117, 2675 – 2676; c)T. Ohkuma,
H. Ooka, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1995, 117,
10417 – 10418.
[13] Examples of asymmetric hydrogenation: a)[( Æ )-tol-binap–Ru–
(S,S)-dpen]: T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T.
Korenaga, M. Terada, R. Noyori, J. Am. Chem. Soc. 1998, 120,
1086 – 1087; b)[( Æ )-dm(xyl)-binap–Ru–(S,S)-dpen]: K. Mikami,
T. Korenaga, Y. Matsumoto, M. Ueki, M. Terada, S. Matsukawa,
Pure. Appl. Chem. 2001, 73, 255 – 259.
Received: July 3, 2003 [Z52277]
Keywords: atropisomerism · chirality · hydrogenation ·
.
phosphane ligands · ruthenium
[14] We have already reported that a Ru complex with a 3,3’-
dimethyl-substituted biphep ligand (dm-biphep)can be con-
trolled to a 3:1 diastereomeric ratio by enantiopure dpen. In
asymmetric hydrogenation, the complex gave a higher enantio-
selectivity than the racemic dm-binap–Ru complex.[4a]
[1] a)E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Comprehensive
Asymmetric Catalysis, Vol. 1–3, Springer, Berlin, 1999; b) Tran-
sition Metals for Organic Synthesis, (Ed.: M. Beller, C. Bolm),
VCH, Weinheim, 1998; c)R. Noyori, Asymmetric Catalysis in
Organic Synthesis, Wiley, New York, 1994; d)H. Brunner, W.
Zettlmeier, Handbook of Enantioselective Catalysis, VCH,
Weinheim, 1993; e) Catalytic Asymmetric Synthesis, Vol. I and
II (Ed.: I. Ojima), VCH, New York, 1993, 2000; f)H. B. Kagan,
Comprehensive Organic Chemistry, Vol. 8, Pergamon, Oxford,
1992; g) Asymmetric Catalysis (Ed.: B. Bosnich), Martinus
Nijhoff Publishers, Dordrecht, 1986.
[2] D. J. Berrisford, C. Bolm, K. B. Sharpless, Angew. Chem. 1995,
107, 1159 – 1171; Angew. Chem. Int. Ed. Engl. 1995, 34, 1059 –
1070.
[3] K. Mikami, K. Aikawa, Y. Yusa, J. J. Jodry, M. Yamanaka,
Synlett 2002, 10, 1561 – 1578.
[4] a)K. Mikami, T. Korenaga, M. Terada, T. Ohkuma, T. Pham, R.
Noyori, Angew. Chem. 1999, 111, 517 – 519; Angew. Chem. Int.
Ed. 1999, 38, 495 – 497; b)K. Mikami, K. Aikawa, T. Korenaga,
Org. Lett. 2001, 3, 243 – 245; c)T. Korenaga, K. Aikawa, M.
Terada, S. Kawauchi, K. Mikami, Adv. Synth. Catal. 2001, 343,
284 – 288; For similar work on the biphep ligand, see: d)M. D.
Tudor, J. J. Becker, P. S. White, M. R. Gagne, Organometallics
2000, 19, 4376 – 4484; e)J. J. Becker, P. S. White, M. R. Gagne, J.
Am. Chem. Soc. 2001, 123, 9478 – 9479.
[5] The diastereomeric ratios were determined by 1H NMR analysis
at 258C in (CD3)2CDOD/CDCl3 (2:1).
[6] M. Yamanaka, K. Mikami, Organometallics 2002, 21, 5847 –
5851.
[7] a)E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Com-
pounds, Wiley, New York, 1994, chap. 14–15; b)“Moleculare
Asymmetrie”: R. Kuhn in Stereochemie (Ed.: H. Freudenberg),
Franz Deutike, Leipzig, 1933, pp. 803 – 824; c)“Recent Advan-
ces in Atropisomerism”: M. Oki, Top. Stereochem. 1983, 14, 1 –
81.
[8] [(Æ )-triphos–Ru–(S,S)-dpen]: 31P NMR (162 MHz, CDCl3):
R,S,S: d = À 11.1 (d, JP-P = 6.2 Hz, 1P), 46.7 (d, JP-P = 36.6 Hz,
1P), 48.0 ppm (dd, JP-P = 6.2, 36.6 Hz, 1P); S,S,S: d = À 10.8 (d,
J
J
P-P = 5.3 Hz, 1P), 46.2 (d, JP-P = 36.6 Hz, 1P), 47.4 ppm (dd,
P-P = 5.3, 36.6 Hz, 1P).
[9] [(Æ )-triphos–Ru–(S)-dabn]: 31P NMR (162 MHz, CDCl3): R,S:
d = À 12.5 (d, JP-P = 5.3 Hz, 1P), 50.9 (d, JP-P = 45.0 Hz, 1P),
5458
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 5455 –5458