solution (5 mL). The aqueous layer was extracted with dichloro-
methane (3 × 2 mL). The organic extracts were then combined,
dried with magnesium sulfate, filtered and concentrated in vacuo
to give the crude acylated and reduced product. Purification
by preparative thin-layer chromatography (4 : 1 pentane : diethyl
ether) provided the 1-hydroxy-3-p-nitrobenzoate derivative
(2.8 mg, 0.0048 mmol, 19%) as a colourless oil. The enantio-
meric excess was then determined by chiral shift NMR analysis
exchange scheme (MZ) for funding, Prof. Ian Fairlamb for use
of the GC.
References
1 M. W. Powner, B. Gerland and J. D. Sutherland, Nature, 2009, 459, 239.
2 (a)
A Butlerow, Justus Liebigs Ann. Chem., 1861, 120, 295;
(b) R. Breslow, Tetrahedron Lett., 1959, 1 (21), 22.
3 A. Ricardo, M. A. Carrigan, A. N. Olcott and S. A. Benner, Science,
2004, 303, 196.
4 J. B. Lambert, S. A. Gurusamy-Thangavelu and K. Ma, Science, 2010,
327, 984.
5 (a) J. E. Hein, E. Tse and D. G. Blackmond, Nat. Chem., 2011, 3, 704;
(b) R. Breslow, Tetrahedron Lett., 2011, 52, 2028; (c) R. Breslow and
Z.-L. Chen, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 5723.
6 (a) S. Pizzarello and A. L. Weber, Science, 2004, 303, 1151;
(b) A. L. Weber and S. Pizzarello, Proc. Natl. Acad. Sci. U. S. A., 2006,
103, 12713.
7 J. Kofoed, J.-L. Reymond and T. Darbre, Org. Biomol. Chem., 2005, 3,
1850.
8 B. List, R. A. Lerner and C. F. Barbas III, J. Am. Chem. Soc., 2000, 122,
2395.
9 K. Sakthivel, W. Notz, T. Bui and C. F. Barbas III, J. Am. Chem. Soc.,
2001, 123, 5260.
10 B. List, L. Hoang and H. J. Martin, Proc. Natl. Acad. Sci. U. S. A., 2004,
101, 5839.
using
europium
tris[3-(trifluoromethylhydroxymethylene)-
(+)-camphorate] (0.9 mg, 0.0010 mmol) in deuterated chloro-
form (0.7 mL). Only HPLC data provided in the literature,12 full
data provided below; IR (film) 2945, 2891, 2867, 1724, 1607,
1531, 1462, 1384, 1349, 1320, 1278, 1103, 1059, 1015, cm−1
;
1H NMR (270 MHz, CDCl3): δ 0.95 (m, 42H, SiCH(CH3)2);
3.55–3.81 (m, 2H, CH2OH); 3.90–4.09 (m, 2H, CH2OSiCH
(CH3)2); 4.21 (q, 4.0 Hz, 1H, CHCH2OH); 5.32 (q, 4.0 Hz, 1H,
CHOOCAr); 8.19 (dd, 9.0 Hz, 13.0 Hz, 4H, C6H4NO2); 13C
NMR (100 MHz, CDCl3): δ 11.8, 12.5, 17.9, 18.0, 18.1, 27.0,
30.3, 61.7, 63.4, 72.6, 76.7, 123.5, 130.8,135.6, 150.6, 164.3;
HRMS (ESI) exact mass calcd for [M + H]+ (C29H54NO7Si2)
requires m/z 584.3433, found m/z 584.3436.
11 B. List, Tetrahedron, 2002, 58, 5573.
12 A. B. Northrup, I. K. Mangion, F. Hettche and D. W. C. MacMillan,
Angew. Chem., Int. Ed., 2004, 43, 2152.
General procedure for the amino acid ester catalyzed
dimerization of glycolaldehyde 13
13 A. B. Northrup and D. W. C. MacMillan, Science, 2004, 305, 1752.
14 A. Córdova, M. Engqvist, I. Ibrahem, J. Casas and H. Sundén, Chem.
Commun., 2005, 2047.
15 A. Córdova, W. Notz and C. F. Barbas III, Chem. Commun., 2002, 3024.
16 N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka and
C. F. Barbas III, J. Am. Chem. Soc., 2006, 128, 734.
17 A. Córdova, I. Ibrahem, J. Casas, H. Sundén, M. Engqvist and E. Reyes,
Chem.–Eur. J., 2005, 11, 4772.
18 J. Mlynarski and J. Paradowska, Chem. Soc. Rev., 2008, 37, 1502.
19 F. Rodríguez-Llansola, J. F. Miravet and B. Escuder, Chem. Commun.,
2009, 7303.
20 M. De Nisco, S. Pedatella, H. Ullah, J. H. Zaidi, D. Naviglio,
Ö. Özdamar and R. Caputo, J. Org. Chem., 2009, 74, 9562.
21 N. Mase, N. Noshiro, A. Mokuya and K. Takabe, Adv. Synth. Catal.,
2009, 351, 2791.
22 A. P. Brogan, T. J. Dickerson and K. D. Janda, Angew. Chem., Int. Ed.,
2006, 45, 8100.
23 Y. Hayashi, Angew. Chem., Int. Ed., 2006, 45, 8103.
24 T. J. Dickerson and K. D. Janda, J. Am. Chem. Soc., 2002, 124, 3220.
25 C. J. Rogers, T. J. Dickerson, A. P. Brogan and K. D. Janda, J. Org.
Chem., 2005, 70, 3705.
26 (a) Y. Hayashi, T. Sumiya, J. Takahashi, H. Gotoh, T. Urushima and
M. Shoji, Angew. Chem., Int. Ed., 2006, 45, 958; (b) S. Aratake, T. Itoh,
T. Okano, T. Usui, M. Shoji and Y. Hayashi, Chem. Commun., 2007,
2524; (c) S. Aratake, T. Itoh, T. Okano, N. Nagae, T. Sumiya, M. Shoji
and Y. Hayashi, Chem.–Eur. J., 2007, 13, 10246; (d) Y. Hayashi,
S. Aratake, T. Itoh, T. Okano, T. Sumiya and M. Shoji, Chem. Commun.,
2007, 957.
Glycolaldehyde dimer 13 (240 mg, 2.00 mmol) was added to a
stirred mixture of amino acid ester (0.10 mmol) in either water
or pH 7 phosphate buffer, or pH 6 phosphate buffer or brine
(3 mL). After 5 h the reaction mixture was concentrated
in vacuo, and re-dissolved in methanol (3 mL) at 0 °C. Sodium
borohydride (152 mg, 4.00 mmol) was then added carefully and
the reaction kept at 0 °C for 3 h, after which it was allowed to
warm to room temperature. After a further 15 h, the reaction was
cooled to 0 °C and quenched with 2 M hydrochloric acid
(3 mL). It was then concentrated in vacuo and re-dissolved in
dichloromethane (5 mL). Pyridine (1 mL) was then added, fol-
lowed by 4-dimethylaminopyridine (1.3 mg, 0.01 mmol) then
acetic anhydride (3 mL). The reaction mixture was stirred for
7 h, then washed with water (10 mL) and extracted with dichlor-
omethane (3 × 5 mL). The separated and combined organics
were then washed with 1 mol dm−3 hydrochloric acid (10 mL),
brine (10 mL) and finally water (10 mL). The organic layer was
then dried with magnesium sulfate and concentrated in vacuo to
give the crude reduced and acylated derivative tetroses (see
Table 6). These were purified by flash column chromatography
using silica gel 60 (220–240 mesh) (8 : 2 hexane : ethyl acetate)
to give the separated acylated tetrols 17 and 18 as a colourless
oils (individual yields provided in Table 6). The chiral product
18 was then dissolved in ethyl acetate and analysed by chiral-
phase GC analysis using the conditions provided in the litera-
ture.17,31 GC tetra-acetylated threitol: (CP-Chirasil-Dex CB); Tinj
= 250 °C, Tdet = 275 °C, flow = 1.5 mL min−1, ti = 100 °C
(10 min), (100 °C min−1) tf = 200 °C (40 min): (L)-isomer: tR =
36.33 min; (D)-isomer: tR = 36.79 min.
27 L. Burroughs, M. E. Vale, J. A. R. Gilks, H. Forintos, C. J. Hayes and
P. A. Clarke, Chem. Commun., 2010, 46, 4776.
28 I. K. Mangion, A. B. Northrup and MacMillan, Angew. Chem., Int. Ed.,
2004, 43, 6722.
29 The precise composition of sea water on the prebiotic (Hadean) Earth
(4.3–3.8 Ga) is a matter of some debate as there is no geological record
of rocks of that age. There is, however, a consensus view that the oceans
did contain sodium chloride, much the same as modern oceans. See:
J. W. Morse and F. T. Mackenzie, Aquat. Geochem., 1998, 4, 301.
30 The reduction–acetylation protocol was performed independently on
samples of enantiomerically pure erythrose and threose to provide refer-
ence samples for chiral-GC analysis. In addition, these studies confirmed
that threose and erythrose do not interconvert under the reaction
conditions.
Acknowledgements
We thank the University of York/EPSRC DTA (LB), the Uni-
versity of Nottingham (MEV) and the ERASMUS
31 Spectroscopic data for the tetraacetate standards are presented in the sup-
porting information†.
1570 | Org. Biomol. Chem., 2012, 10, 1565–1570
This journal is © The Royal Society of Chemistry 2012