46 J. Agric. Food Chem., Vol. 52, No. 1, 2004
Korpima¨ki et al.
(12) Le Boulaire, S.; Bauduret, J.-C.; Andre, F. Veterinary drug
residues survey in meat: an HPLC method with a matrix solid-
phase dispersion extraction. J. Agric. Food Chem. 1997, 45,
2134-2142.
(13) Dost, K.; Jones, D.; Davidson, G. Determination of sulfonamides
by packed column supercritical fluid chromatography with
atmospheric pressure chemical ionisation mass spectrometric
detection. Analyst 2000, 125, 1243-1247.
tion of sample matrix environments. These matrix effects can
make it impossible to utilize certain antibodies in the analysis
of real samples. Luckily, our new sulfonamide binders did not
seem to suffer from any major matrix effects as shown with
beef, serum, and milk matrices, making it possible to utilize
these binders in the analysis of real samples in the future.
CONCLUSIONS
In our earlier studies (26, 27), we demonstrated, by improving
the broad specificity binding properties of sulfonamide antibody
27G3, that protein engineering is a powerful technique when
the creation of broad specificity antibodies is attempted. In this
study, we took the engineering even further and managed to
produce, according to our knowledge, the first published
antibodies capable of binding at least 13 different sulfonamides
with an affinity high enough so that the antibodies can be used
for the detection of these sulfonamides with a sensitivity greater
than the established MRLs in the U.S. and EU. Additionally,
we demonstrated that at least one of these antibodies, M.3.4,
can be used to measure sulfonamides from at least three different
sample matrices without any major matrix effects on IC50 values.
(14) Ackermans, M.; Beckers, J.; Everaerts, F.; Hoogland, H.;
Tomassen, M. Determination of sulphonamides in pork meat
extracts by capillary zone electrophoresis. J. Chromatogr. 1992,
596, 101-109.
(15) Hows, M.; Perrett, D.; Kay, J. Optimisation of a simultaneous
separation of sulphonamides, dihydrofolate reductase inhibitors
and beta-lactam antibiotics by capillary electrophoresis. J.
Chromatogr. A 1997, 768, 97-104.
(16) Heering, W.; Usleber, E.; Dietrich, R.; Ma¨rtlbauer, E. Immu-
nochemical screening for antimicrobial drug residues in com-
mercial honey. Analyst 1998, 123, 2759-2762.
(17) Elliott, C.; Baxter, G.; Crooks, S.; McCaughey, W. The develop-
ment of a rapid immunobiosensor screening method for the
detection of residues of sulphadiazine. Food Agric. Immunol.
1999, 11, 19-27.
LITERATURE CITED
(18) Akkoyun, A.; Kohen, V. F.; Bilitewski, U. Detection of
sulphamethazine with an optical biosensor and anti-idiotypic
antibodies. Sens. Actuators 2000, B70, 12-18.
(19) Kohen, F.; Gayer, B.; Amir-Zaltsman, Y.; O’Keeffe, M. Genera-
tion of an anti-idiotypic antibody as a surrogate ligand for
sulfamethazine in immunoassay procedures. Food Agric. Immu-
nol. 2000, 12, 193-201.
(20) Lee, N.; Holtzapple, C.; Muldoon, M.; Deshpande, S.; Stanker,
L. Immunochemical approaches to the detection of sulfathiazole
in animal tissues. Food Agric. Immunol. 2001, 13, 5-17.
(21) Spinks, C.; Schut, C.; Wyatt, G.; Morgan, M. Development of
an ELISA for sulfachlorpyridazine and investigation of matrix
effects from different sample extraction procedures. Food Addit.
Contam. 2001, 18, 11-18.
(22) Situ, C.; Crooks, S.; Baxter, A.; Ferguson, J.; Elliott, C. On-line
detection of sulfamethazine and sulfadiazine in porcine bile using
a multichannel high-throughput SPR biosensor. Anal. Chim. Acta
2002, 473, 143-149.
(23) Muldoon, M.; Font, I.; Beier, R.; Holtzapple, C.; Young, C.;
Stanker, L. Development of a cross-reactive monoclonal antibody
to sulfonamide antibiotics: Evidence for structural conformation-
selective hapten recognition. Food Agric. Immunol. 1999, 11,
117-134.
(24) Spinks, C.; Wyatt, G.; Lee, H.; Morgan, M. Molecular modeling
of hapten structure and relevance to broad specificity immu-
noassay of sulfonamide antibiotics. Bioconjugate Chem. 1999,
10, 583-588.
(25) Spinks, C.; Wyatt, G.; Everest, S.; Jackman, R.; Morgan, M.
Atypical antibody specificity: Advancing the development of a
generic assay for sulphonamides using heterologous ELISA. J.
Sci. Food Agric. 2002, 82, 428-434.
(26) Korpima¨ki, T.; Rosenberg, J.; Virtanen, P.; Karskela, T.;
Lamminma¨ki, U.; Tuomola, M.; Vehnia¨inen, M.; Saviranta, P.
Improving broad specificity hapten recognition with protein
engineering. J. Agric. Food Chem. 2002, 50, 4194-4201.
(27) Korpima¨ki, T.; Rosenberg, J.; Virtanen, P.; Lamminma¨ki, U.;
Tuomola, M.; Saviranta, P. Further improvement of broad
specificity hapten recognition with protein engineering. Protein
Eng. 2003, 16, 37-46.
(1) Sheth, H.; Sporns, P. Development of a single ELISA for
detection of sulfonamides. J. Agric. Food Chem. 1991, 39,
1696-1700.
(2) Haasnoot, W.; Cazemier, G.; Du Pre, J.; Kemmers-Voncken, A.;
Bienenmann-Ploum, M.; Verheijen, R. Sulphonamide antibod-
ies: From specific polyclonals to generic monoclonals. Food
Agric. Immunol. 2000, 12, 15-30.
(3) Muldoon, M.; Holtzapple, C.; Deshpande, S.; Beier, R.; Stanker,
L. Development of a monoclonal antibody-based cELISA for
the analysis of sulfadimethoxine. 1. Development and charac-
terization of monoclonal antibodies and molecular modeling
studies of antibody recognition. J. Agric. Food Chem. 2000, 48,
537-544.
(4) Koenen-Dierick, K.; Okerman, L.; De Zutter, L.; Degroodt, J.;
Van Hoof, J.; Srebrnik, S. A one-plate microbiological screening
test for antibiotic residue testing in kidney tissue and meat: an
alternative to the EEC four-plate method? Food Addit. Contam.
1995, 12, 77-82.
(5) Korsrud, G.; Boison, J.; Nouws, J.; MacNeil, J. Bacterial
inhibition tests used to screen for antimicrobial veterinary drug
residues in slaughtered animals. J. AOAC Int. 1998, 81, 21-
24.
(6) Nouws, J.; Van Egmond, H.; Loeffen, G.; Schouten, J.; Keukens,
H.; Smulders, I.; Stegeman, H. Suitability of the Charm HVS
and a microbiological multiplate system for detection of residues
in raw milk at EU maximum residue levels. Vet. Q. 1999, 21,
21-27.
(7) Abian, J.; Churchwell, M.; Korfmacher, W. High-performance
liquid chromatography thermospray mass spectrometry of 10
sulfonamide antibiotics. Analysis in milk at the ppb level. J.
Chromatogr. 1993, 629, 267-276.
(8) Cooper, A.; Creaser, C.; Farrington, W.; Tarbin, J.; Shearer, G.
Development of multi-residue methodology for the HPLC
determination of veterinary drugs in animal tissues. Food Addit.
Contam. 1995, 12, 167-176.
(9) Lin, C.; Hong, C.; Kondo, F. Simultaneous determination of
residual sulfonamides in the presence and absence of p-
aminobenzoic acid by high-performance liguid chromatography.
Microbios 1995, 83, 175-183.
(10) Volmer, D. Multiresidue determination of sulfonamide antibiotics
in milk by short-column liquid chromatography coupled with
electrospray ionization tandem mass spectrometry. Rapid Com-
mun. Mass. Spectrom. 1996, 10, 1615-1620.
(28) Haasnoot, W.; Bienenmann-Ploum, M.; Kohen, F. Biosensor
immunoassay for the detection of eight sulfonamides in chicken
serum. Anal. Chim. Acta 2003, 483, 171-180.
(11) Abjean, J. Planar chromatography for the multiclass, multiresidue
screening of chloramphenicol, nitrofuran and sulfonamide resi-
dues in pork and beef. J. AOAC Int. 1997, 80, 737-740.