Please do not adjust margins
ChemComm
Page 4 of 6
COMMUNICATION
ChemComm
leading to ketone 7 (a comparison of the two synthetic routes is
available in the supporting information). The environmental
friendly character of this transformation should also be
highlighted as it exhibits a high reaction mass efficiency33 (RME)
of 79% and produces only a light waste product LiCl with low
toxicity.
7
8
C. Torborg and M. Beller, Adv. Synth. Catal., 2009, 351,
3027–3043.
DOI: 10.1039/C8CC08444K
S. Meiries, A. Chartoire, A. M. Z. Slawin and S. P. Nolan,
Organometallics, 2012, 31, 3402–3409.
H. Xu and C. Wolf, Chem. Commun., 2009, 21, 3035–3037.
X. Huang and S. L. Buchwald, Org. Lett., 2001, 3, 3417–
3419.
A. T. Wolters, V. Hornillos, D. Heijnen, M. Giannerini and B.
L. Feringa, ACS Catal., 2016, 6, 2622–2625.
S. Nahm and S. M. Weinreb, Tetrahedron, 1981, 22, 3815-
3818
9
10
Scheme 4 Application in the synthesis of a kinase inhibitor (AMA37)
11
12
OR
O
1) PhLi
O
O
2) Pd2(dba)3/SPhos
N
N
13
14
R. K. Dieter, Tetrahedron, 1999, 55, 4177-4236.
M. Adler, S. Adler and G. Boche, J. Phys. Org. Chem., 2005,
18, 193-209
C. Liu, M. Achtenhagen and M. Szostak, Org. Lett., 2016,
18, 2375-2378
D. A. Evans, G. Borg and K. A. Scheidt, Angew. Chem. Int.
Ed., 2002, 41, 3188-3191.
A. Salomone, F. M. Perna, F. C. Sassone, A. Falcicchio, J.
Bezenšek, J. Svete, B. Stanovnik, S. Florio and V. Capriati, J.
Org. Chem., 2013, 78, 11059-11065
M. Andrs, J. Korabecny, D. Jun, Z. Hodny, J. Bartek and K.
Kuca, J. Med. Chem., 2015, 58, 41–71.
N. Kataoka, Q. Shelby, J. P. Stambuli and J. F. Hartwig, J.
Org. Chem., 2002, 67, 5553–5566.
Q. Shen, T. Ogata and J. F. Hartwig, J. Am. Chem. Soc.,
2008, 130, 6586–6596.
M. G. Organ, M. Abdel-Hadi, S. Avola, I. Dubovyk, N. Hadei,
E. A. B. Kantchev, C. J. O’Brien, M. Sayah and C. Valente,
Chem. Eur. J., 2008, 14, 2443–2452.
O
Atom economy = 87%
RME = 79%
Cl
6
O
91%
BBr3
74%
8 : R = H : AMA37
7 : R = Me
15
16
17
In conclusion, a one-pot procedure toward the synthesis of
amine aryl ketones has been developed, enabling Buchwald-
Hartwig amination with in-situ generated lithium amides.
Starting from easily accessible amides and organolithium
reagents, this strategy allows for fast and efficient modular
functionalization with high atom economy generating only LiCl
as stoichiometric waste. A diversity of aryllithium nucleophiles
and amide coupling partners has been combined following this
strategy and the applicability of the methodology was
illustrated with the efficient synthesis of a selective kinase
inhibitor.
18
19
20
21
Conflicts of interest
There are no conflicts to declare.
22
23
24
Y. Zhang, V. César and G. Lavigne, European J. Org. Chem.,
2015, 2015, 2042–2050.
U. Azzena, M. Carraro, L. Pisano, S. Monticelli, R. Bartolotta
and V. Pace, ChemSusChem, 2019, 12, 40-70
R. Luisi and V. Capriati, Lithium Compounds in Organic
Synthesis. From Fundamentals to Applications. Edited by
Renzo Luisi and Vito Capriati., Wiley-VCH, Weinheim.,
2014, vol. 53.
M. Al-Ghorbani, A. Bushra Begum, Z. Zabiulla, S. V.
Mamatha and S. A. Khanum, Res. J. Pharm. Technol., 2015,
8, 611–628.
N. Chadha and O. Silakari, Eur. J. Med. Chem., 2017, 134,
159–184.
G. D. Vo and J. F. Hartwig, J. Am. Chem. Soc., 2009, 131,
11049–11061.
Y. Aubin, C. Fischmeister, C. M. Thomas and J.-L. Renaud,
Chem. Soc. Rev., 2010, 39, 4130.
J. Schranck and A. Tlili, ACS Catal., 2018, 8, 405–418.
M. Adler, M. Marsch, N. S. Nudelman and G. Boche,
Angew. Chem. Int. Ed., 1999, 38, 1261–1263.
D. L. Comins, Synlett, 1992, 615–625.
Z. A. Knight, G. G. Chiang, P. J. Alaimo, D. M. Kenski, C. B.
Ho, K. Coan, R. T. Abraham and K. M. Shokat, Bioorg. Med.
Chem., 2004, 12, 4749–4759.
R. A. Sheldon, I. W. C. E. Arends and U. Hanefeld, Green
Chemistry and Catalysis, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany, 2007.
Acknowledgements
This work was supported financially by the European Research
Council (Advanced Investigator Grant, No. 227897 to B.L.F.); The
Netherlands Organization for Scientific Research (NWO− CW);
funding from the Ministry of Education, Culture, and Science
(Gravitation program 024.001.035); The Royal Netherlands
Academy of Arts and Sciences (KNAW); and NRSC-Catalysis are
gratefully acknowledged.
25
26
27
28
Notes and references
1
2
3
4
5
6
M. Kosugi, M. Kameyama and T. Migita, Chem. Lett., 1983,
12, 927–928.
A. S. Guram, R. A. Rennels and S. L. Buchwald, Angew.
Chem. Int. Ed., 1995, 34, 1348–1350.
J. Louie and J. F. Hartwig, Tetrahedron Lett., 1995, 36,
3609–3612.
B. P. Fors and S. L. Buchwald, J. Am. Chem. Soc., 2010, 132,
15914–15917.
D. S. Surry and S. L. Buchwald, Angew. Chem. Int. Ed., 2008,
47, 6338–6361.
29
30
31
32
33
P. Ruiz-Castillo and S. L. Buchwald, Chem. Rev., 2016, 116,
12564–12649.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins