also be achieved by systems arranged in a row. Further-
more, hazardous and unstable chemicals can be applied in
various reactions without safety hazards.4b,7 Recently,
Yoshida’s research group serialized various reactions via
flash chemistry using reactive organic lithium reagents.8
The reactions involving unstable short-lived reactive inter-
mediates are perfectly controlled under the sophisticated
regulations of residence time and temperatures.
Excellent microchemical reactions for alkene diacetoxyla-
tion are summarized in Scheme 1. Although use of mild
reaction conditions has been the most important issue in
previous studies because of explosive oxidants and
unstable products, this is not the case in this microchem-
istry. Fastand selective reaction conditions werepreferable
in our study, providing the diacetoxylation products in
good yields and selectivities within 5 min residence time.
Table 1. Pd-Catalyzed Diacetoxylation of 2-Methylallyl Acetate
in a Microreactora
Scheme 1. Diacetoxylation of Alkenes
reaction A
reaction B
ratio (AcO2H/ time (min), time (min), convc yieldc
entry
Ac2O)b
temp (°C)
temp (°C)
(%)
(%)
1
2
1:0
À, À
À, À
À, À
5, rt
5, rt
5, 50
5, 65
5, rt
8
1:0
38 9.5
59 19.5
15 6.75
80 38.4
78 46.8
73 59.9
83 66.4
88 80.1
99 95.0 (93.0)
99 92.7
99 86.0
35 19.6
3
1:0
4
1:3
5
1:3
5, 50
5, 50
5, 50
5, 50
5, rt
5, 50
5, 50
5, 50
5, 60
5, 60
5, 60
10, 60
15, 60
5, 60
6
1:5
7
1:10
1:10
1:20
1:20
1:20
1:20
1:20
8
9
Herein, we report safe microchemical processes for the
diacetoxylation of several alkenes which showed advan-
tage of shortened and optimal reaction time. High heat-
exchange efficiency in the microchemical system allowed
highly exothermic reactions to be performed under iso-
thermal conditions, and the formation of hot spots and
accumulation of reaction heat were suppressed. It afforded
high yields and selectivities at elevated temperature.
10
11
12
13d
5, 50
5, rt
5, 50
5, 50
a Reagents: 1.00 M 2-methylallyl acetate in AcOH, 5 mol %
Pd(OAc)2 (0.05 M in AcOH), 1.2 equiv AcO2H (solution of 35.5% AcO2H,
6.5% hydrogen peroxide, 17% H2O, 40% AcOH). b Wt/wt ratio of 35.5%
AcO2H solution/Ac2O. c Conversion (%) and yield (%) were determined
by GC/MSD analysis. The number in parentheses is the isolated yield.
d No catalyst.
(6) Selected examples of microchemical systems: (a) Mason, B. P.;
Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem.
Rev. 2007, 107, 2300–2318. (b) Whitesides, G. M. Nature 2006, 442, 368–
373. (c) Park, C. P.; Kim, D.-P. Angew. Chem., Int. Ed. 2010, 49, 6825–
6829. (d) Park, C. P.; Kim, D.-P. J. Am. Chem. Soc. 2010, 132, 10102–
10106. (e) Park, C. P.; Van Wingerden, M. M.; Han, S.-Y.; Kim, D.-P.;
Grubbs, R. H. Org. Lett. 2011, 13, 2398–2401. (f) Park, C. P.; Maurya,
R. A.; Lee, J. H.; Kim, D.-P. Lab Chip 2011, 11, 1941–1945. (g) Wiles, C.;
Watts, P.; Haswell, S. J. Lab Chip 2007, 7, 322–330. (h) Baxendale, I. R.;
Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew. Chem., Int. Ed. 2009,
48, 4017–4021. (i) Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.;
Ueno, M.; Kitamori, T.; Kobayashi, S. Science 2004, 304, 1305–1308. (j)
Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Synlett 2008, 151–163.
(7) (a) Maurya, R. A.; Park, C. P.; Lee, J. H.; Kim, D.-P. Angew.
Chem., Int. Ed. 2011, 50, 5952–5955. (b) O’Brien, M.; Baxendale, I. R.;
Ley, S. V. Org. Lett. 2010, 12, 1596–1598. (c) van den Broek, B. A. M.
W.; Becker, R.; Kossl, F.; Delville, M. M. E.; Nieuwland, P. J.; Koch,
K.; Rutjes, F. P. J. T. Chem. Sus. Chem. 2012, 5, 289–292. (d) Hartung,
A.; Keane, M. A.; Kraft, A. J. Org. Chem. 2007, 72, 10235–10238.
(8) (a) Nagaki, A.; Matsuo, C.; Kim, S.; Saito, K.; Miyazaki, A.;
Yoshida, J. Angew. Chem., Int. Ed. 2012, 51, 3245–3248. (b) Tomida, Y.;
Nagaki, A.; Yoshida, J. J. Am. Chem. Soc. 2011, 133, 3744–3747.
(c) Nagaki, A.; Yamada, S.; Doi, M.; Tomida, Y.; Takabayashi, N.;
Yoshida, J. Green Chem. 2011, 13, 1110–1113. (d) Kim, H.; Nagaki, A.;
Yoshida, J. Nat. Commun. 2011, 2, 264.
Recently, Jung et al. reported palladium-catalyzed di-
acetoxylation in the presence of peracetic acid and acetic
anhydride.9 Even though the reaction has the significant
advantage of mild reaction conditions, the reaction had to
be conducted slowly for higher selectivity and safety. We
began our study by investigating the diacetoxylation in the
microchemical system which was made of a commercial
polytetrafluoroethylene (PTFE) tube (i.d.: 500 μm, length:
6 m); details are described in the Supporting Information.
We regulated reaction parameters including temperature,
reagents, and residence time; the results are summarized in
Table 1. Because the commercially available peracetic acid
solution (35.5%) always contains acetic acid (40%), hy-
drogen peroxide (6.5%), and water (17%) to stabilize the
(9) Park, C. P.; Lee, J. H.; Yoo, K. S.; Jung, K. W. Org. Lett. 2010, 12,
2450–2452.
Org. Lett., Vol. 15, No. 4, 2013
753