Organic Letters
Letter
Reddy, D. S. Design, Synthesis, and Identification of Silicon
Incorporated Oxazolidinone Antibiotics with Improved Brain
Exposure. ACS Med. Chem. Lett. 2015, 6, 1105−1110. (e) Jachak,
G. R.; Ramesh, R.; Sant, D. G.; Jorwekar, S. U.; Jadhav, M. R.; Tupe,
S. G.; Deshpande, M. V.; Reddy, D. S. Silicon Incorporated
Morpholine Antifungals: Design, Synthesis, and Biological Evaluation.
ACS Med. Chem. Lett. 2015, 6, 1111−1116. (f) Ramesh, R.; Shingare,
R. D.; Kumar, V.; Anand, A.; B, S.; Veeraraghavan, S.; Viswanadha, S.;
Ummanni, R.; Gokhale, R.; Reddy, D. S. Repurposing of a drug
scaffold: Identification of novel sila analogues of rimonabant as potent
antitubercular agents. Eur. J. Med. Chem. 2016, 122, 723−730.
(4) (a) Vivet, B.; Cavelier, F.; Martinez, J. Synthesis of Silaproline, a
New Proline Surrogate. Eur. J. Org. Chem. 2000, 807−811.
(b) Cavelier, F.; Vivet, B.; Martinez, J.; Aubry, A.; Didierjean, C.;
Vicherat, A.; Marraud, M. Influence of Silaproline on Peptide
Conformation and Bioactivity. J. Am. Chem. Soc. 2002, 124, 2917−
2923.
the reaction as synthetic equivalents of silylene. A mechanism
involving rhodium silylenoid is proposed based on the fact that
the [2 + 2 + 1] cycloaddition proceeded even with the
borylsilanes having no heteroatom functional group on the
silicon atom.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, characterization data of
compounds, and 1H and 13C NMR spectra of new
(5) (a) Damour, D.; Barreau, M.; Dutruc-Rosset, G.; Doble, A.; Piot,
O.; Mignani, S. 1,1-Diphenyl-3-dialkylamino-1-silacyclopentane De-
rivatives: A New Class of Potent and Selective 5-HT2A Antagonists.
AUTHOR INFORMATION
Corresponding Authors
■
̈
Bioorg. Med. Chem. Lett. 1994, 4, 415−420. (b) Heinonen, P.; Sipila,
̈
H.; Neuvonen, K.; Lonnberg, H.; Cockcroft, V. B.; Wurster, S.;
Virtanen, R.; Savola, M. K. T.; Salonen, J. S.; Savola, J. M. Synthesis
and pharmacological properties of 4(5)-(2-ethyl-2,3-dihydro-2-
silainden-2-yl)imidazole, a silicon analogue of atipamezole. Eur. J.
Med. Chem. 1996, 31, 725−729. (c) Daiss, J. O.; Burschka, C.; Mills,
J. S.; Montana, J. G.; Showell, G. A.; Warneck, J. B. H.; Tacke, R. Sila-
venlafaxine, a Sila-Analogue of the Serotonin/Noradrenaline Reup-
take Inhibitor Venlafaxine: Synthesis, Crystal Structure Analysis, and
Pharmacological Characterization. Organometallics 2006, 25, 1188−
1198. (d) Wang, J.; Ma, C.; Wu, Y.; Lamb, R. A.; Pinto, L. H.;
DeGrado, W. F. Exploring Organosilane Amines as Potent Inhibitors
and Structural Probes of Influenza A Virus M2 Proton Channel. J. Am.
Chem. Soc. 2011, 133, 13844−13847. (e) Ramesh, R.; Reddy, D. S.
Zinc mediated allylations of chlorosilanes promoted by ultrasound:
Synthesis of novel constrained sila amino acids. Org. Biomol. Chem.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was partially supported by JSPS KAKENHI Grant
Numbers 17J05734 for JSPS Research Fellow (I.S.) and
JP15H05811 for Scientific Research on Innovative Areas in
Precisely Designed Catalysts with Customized Scaffolding
(M.S.).
̈
2014, 12, 4093−4097. (f) Geyer, M.; Baus, J. A.; Fjellstrom, O.;
Wellner, E.; Gustafsson, L.; Tacke, R. Synthesis and Pharmacological
Properties of Silicon- Containing GPR81 and GPR109A Agonists.
ChemMedChem 2015, 10, 2063−2070.
REFERENCES
■
(6) (a) Okinoshima, H.; Yamamoto, K.; Kumada, M. Dichlcrobis-
(triethy)phosphine)nickel(II) as a Catalyst for Reactions of sym-
etramethyldisilane with Unsaturated Hydrocarbons. Novel Synthetic
Routes to 1-Silacyclopentadienes and 1,4-Bis(dimethylsily1)-2-
butenes. J. Am. Chem. Soc. 1972, 94, 9263−9264. (b) Sakurai, H.;
Kamiyama, Y.; Nakadaira, Y. Photochemical Generation of
Silacyclopropene. J. Am. Chem. Soc. 1977, 99, 3879−3880.
(c) Seyferth, D.; Vick, S. C.; Shannon, M. L.; Lim, T. F. O.;
Duncan, D. P. Two atom insertions into the silacyclopropane and
silacyclopropene rings: mechanistic considerations. J. Organomet.
(1) For reviews on silicon in drug discovery, see: (a) Showell, G. A.;
Mills, J. S. Chemistry challenges in lead optimization: silicon isosteres
in drug discovery. Drug Discovery Today 2003, 8, 551−556. (b) Franz,
A. K.; Wilson, S. O. Organosilicon Molecules with Medicinal
Applications. J. Med. Chem. 2013, 56, 388−405. (c) Ramesh, R.;
Reddy, D. S. Quest for Novel Chemical Entities through
Incorporation of Silicon in Drug Scaffolds. J. Med. Chem. 2018, 61,
3779−3798.
(2) For reviews on silicon-containing amino acids, see: (a) Morten-
sen, M.; Husmann, R.; Veri, E.; Bolm, C. Synthesis and applications of
silicon-containing α-amino acids. Chem. Soc. Rev. 2009, 38, 1002−
̈
Chem. 1977, 135, C37−C44. (d) Schafer, A.; Weidenbruch, M.; Pohl,
S. Siliciumverbindungen mit starken intramolekularen sterischen
wechselwirkungen: XIX. Simultane bildung und reaktionen von di-t-
butylsilandiyl und tetra-t-butyldisilen. J. Organomet. Chem. 1985, 282,
305−313. (e) Ojima, I.; Fracchiolla, D. A.; Donovan, R. J.; Banerji, P.
Silylcarbobicyclization of 1,6-Diynes: A Novel Catalytic Route to
Bicyclo[3.3.0]octenones. J. Org. Chem. 1994, 59, 7594−7595.
(f) Palmer, W. S.; Woerpel, K. A. Stereospecific Palladium-Catalyzed
Reactions of Siliranes with Alkynes. Organometallics 1997, 16, 1097−
1099. (g) Palmer, W. S.; Woerpel, K. A. Palladium-Catalyzed
Reactions of Di-tert-butylsiliranes with Electron-Deficient Alkynes
and Investigations of the Catalytic Cycle. Organometallics 2001, 20,
3691−3697. (h) Matsuda, T.; Suda, Y.; Fujisaki, Y. Synthesis of
Siloles via Rhodium-Catalyzed Cyclization of Alkynes and Diynes
with Hexamethyldisilane. Synlett 2011, 813−816.
́
1010. (b) Remond, E.; Martin, C.; Martinez, J.; Cavelier, F. Silicon-
Containing Amino Acids: Synthetic Aspects, Conformational Studies,
and Applications to Bioactive Peptides. Chem. Rev. 2016, 116,
11654−11684.
(3) (a) Tacke, R.; Handmann, V. I.; Bertermann, R.; Burschka, C.;
Penka, M.; Seyfried, C. Sila-Analogues of High-Affinity, Selective σ
Ligands of the Spiro[Indane-1,4’-piperidine] Type: Syntheses,
Structures, and Pharmacological Properties. Organometallics 2003,
22, 916−924. (b) Johansson, T.; Weidolf, L.; Popp, F.; Tacke, R.;
Jurva, U. In Vitro Metabolism of Haloperidol and Sila-Haloperidol:
New Metabolic Pathways Resulting from Carbon/Silicon Exchange.
Drug Metab. Dispos. 2010, 38, 73−83. (c) Tacke, R.; Nguyen, B.;
Burschka, C.; Lippert, W. P.; Hamacher, A.; Urban, C.; Kassack, M.
U. Sila-Trifluperidol, a Silicon Analogue of the Dopamine (D2)
Receptor Antagonist Trifluperidol: Synthesis and Pharmacological
Characterization. Organometallics 2010, 29, 1652−1660. (d) Seethar-
amsingh, B.; Ramesh, R.; Dange, S. S.; Khairnar, P. V.; Singhal, S.;
Upadhyay, D.; Veeraraghavan, S.; Viswanadha, S.; Vakkalanka, S.;
(7) A single example of rhodium-catalyzed alkene−alkyne−silylene
[2 + 2 + 1] cycloaddition has been reported in ref 6h.
(8) Radical-mediated alkene−alkyne−silylene [2 + 2 + 1] cyclo-
addition of N-(2-ethynylphenyl)acrylamines has been reported
D
Org. Lett. XXXX, XXX, XXX−XXX