A. B. Dounay et al. / Bioorg. Med. Chem. Lett. 23 (2013) 1961–1966
1965
Figure 3. X-ray structure of adduct formed by 20 with PLP in the KAT II active site. The surface is colored by increasing hydrophobicity, from blue to green to brown.
3. Potter, M. C.; Elmer, G. I.; Bergeron, R.; Albuquerque, E.; Guidetti, P.; Wu, H.-Q.;
Schwarcz, R. Neuropsychopharmacology 2010, 35, 1734.
4. Hilmas, C.; Pereira, E. F.; Alkondon, M.; Rassoulpour, A.; Schwarcz, R.;
for the new series of pyrazole analogs (Table 1). The most potent
new analog, pyrazole 20, has a Ki of 1.9 nM, which is comparable
to the Ki of compound 2 (1.6 nM), our most potent analog from
the original series.
Albuquerque, E. X. J. Neurosci. 2001, 21, 7463.
5. Kessler, M.; Terramani, T.; Lynch, G.; Baudry, M. J. Neurochem. 1989, 52, 1319.
6. Natale, B. C.; Murray, I. A.; Schroeder, J. C.; Flaveny, C. A.; Lahoti, T. S.;
Laurenzana, E. M.; Omiecinski, C. J.; Perdew, G. H. Toxicol. Sci. 2010, 115, 89.
7. Erhardt, S.; Blennow, K.; Nordin, C.; Skogh, E.; Lindstrom, L. H.; Engberg, G.
Neurosci. Lett. 2001, 313, 96.
8. Nilsson, L. K.; Linderholm, K. R.; Engberg, G.; Paulson, L.; Blennow, K.;
Lindstrom, L. H.; Nordin, C.; Karanti, A.; Persson, P.; Erhardt, S. Schizophr. Res.
2005, 80, 315.
9. Olsson, S. K.; Samuelsson, M.; Saetre, P.; Lindstrom, L.; Jonsson, E. G.; Nordin, C.;
Engberg, G.; Erhardt, S.; Landen, M. J. Psychiatry Neurosci. 2010, 35, 195.
10. Schwarcz, R.; Rassoulpour, A.; Wu, H.-Q.; Medoff, D.; Tamminga, C. A.; Roberts,
R. C. Biol. Psychiatry 2001, 50, 521.
11. Han, Q.; Cai, T.; Tagle, D. A.; Li, J. Cell. Mol. Life Sci. 2010, 67, 353.
12. Rossi, F.; Garavaglia, S.; Montalbano, V.; Walsh, M. A.; Rizzi, M. J. Biol. Chem.
2008, 283, 3559.
13. Rossi, F.; Valentina, C.; Garavaglia, S.; Sathyasaikumar, K. V.; Schwarz, R.;
Kojima, S.; Okuwaki, K.; Ono, S.; Kajii, Y.; Rizzi, M. J. Med. Chem. 2010, 53, 5684.
14. Pellicciari, R.; Rizzo, R. C.; Costantino, G.; Marinozzi, M.; Amori, L.; Guidetti, P.;
Wu, H.-Q.; Schwarcz, R. ChemMedChem 2006, 1, 528.
15. Dounay, A. B.; Anderson, M.; Bechle, B. M.; Campbell, B. M.; Claffey, M. M.;
Evdokimov, A.; Evrard, E.; Fonseca, K. R.; Gan, X.; Ghosh, S.; Hayward, M. M.;
Horner, W.; Kim, J.-Y.; McAllister, L. A.; Pandit, J.; Paradis, V.; Parikh, V. D.;
Reese, M. R.; Rong, S.; Salafia, M. A.; Schuyten, K.; Strick, C. A.; Tuttle, J. B.;
Valentine, J.; Wang, H.; Zawadzke, L. E.; Verhoest, P. R. ACS Med. Chem. Lett.
2012, 3, 187.
In order to evaluate progress against our original goal of identify-
ing a less lipophilic core structure for elaboration to potent KAT II
inhibitors, the lipophilicity of these analogs was assessed using cal-
culated shake flask logD (cSF logD) values (Table 1).27,28 This lipo-
philicity term was used in conjunction with the potency term Ki to
calculate lipophilic ligand efficiency (LipE), a parameter that nor-
malizes potency differences relative to a compound’s lipophilicity,
allowing for a direct comparison between compounds.29 A compar-
ison of the LipE of our new pyrazole analogs demonstrates that these
compounds generally achieve comparable lipophilic efficiency to
lead compound 1 and improved efficiency relative to compound 2
(Table 1). Notably, pyrazole 20 shows significantly improved LipE
(8.53) over compounds 1 (7.77) and 2 (6.73) and emerges as our
most efficient KAT II inhibitor identified to date. As anticipated,
the lower logD of 20 relative to 2 also results in reduction of CYP-
mediated clearance. The measured clearance (intrinsic, apparent)
in a human liver microsome assay30 improved from 26.0
mg for compound 2 to <8.0 L/min/mg for compound 20.
lL/min/
l
16. Tuttle, J. B.; Anderson, M.; Bechle, B. M.; Campbell, B. M.; Chang, C.; Dounay, A.
B.; Evrard, E.; Fonseca, K. R.; Gan, X.; Ghosh, S.; Horner, W.; James, L. C.; Kim, J.-
Y.; McAllister, L. A.; Pandit, J.; Parikh, V. D.; Rago, B. J.; Salafia, M. A.; Strick, C.
A.; Zawadzke, L. E.; Verhoest, P. R. ACS Med. Chem. Lett. 2013, 4, 37.
17. For X-ray structure of 2 bound to KAT II, see Ref. 16.
18. Full experimental details are contained within the following patent
application: Dounay, A. B.; McAllister, L. A.; Parikh, V. D.; Rong, S.; Verhoest,
P. R. PCT Int. Appl. 2012, WO 2012073143.
In summary, our structure-based drug design approach has en-
abled the identification of a new pyrazole series of irreversible KAT
II inhibitors. Optimization within this new series led to the discov-
ery of 20, which displays significantly improved LipE and provides
a new template for further preclinical investigation of KAT II as a
novel mechanism for treatment of CNS disorders.
19. Corey, E. J.; Noe, M. C.; Xu, F. Tetrahedron Lett. 1998, 39, 5347.
20. McAllister, L. A.; Bechle, B. M.; Dounay, A. B.; Evrard, E.; Gan, X.; Ghosh, S.; Kim,
J.-Y.; Parikh, V. D.; Tuttle, J. B.; Verhoest, P. R. J. Org. Chem. 2011, 76, 3484.
21. The ester activation step was necessary to prevent over-reduction to a lactam
by-product under the reductive cyclization conditions.
22. Xia, Y.; Chackalamannil, S.; Czarniecki, M.; Tsai, H.; Vaccaro, H.; Cleven, R.;
Cook, J.; Fawzi, A.; Watkins, R.; Zhang, H. J. Med. Chem. 1997, 40, 4372.
23. Wager, T. T.; Villalobos, A.; Verhoest, P. R.; Hou, X.; Shaffer, C. L. Expert Opin.
Drug Discov. 2011, 6, 371.
Acknowledgment
We would like to thank Brian Campbell, Christine Strick, and
Scot Mente for helpful discussions and Katherine Brighty for care-
ful editing of this manuscript.
24. Prepared in analogy to compound 18, starting from 3-methyl-5-
(trifluoromethyl)-1H-pyrazole as described by Acker, B. A.; Hughes, R. O.;
Jacobsen, E. J.; Lu, H.-F.; Rogers, T. E.; Tollefson, M. B.; Walker, J. K. PCT Int. Appl.
2006, WO 2006046135.
25. Prepared from methyl 1-benzyl-4-nitro-1H-pyrazole-5-carboxylate using the
general methods described in Schemes 1 and 2. Commercially available 4-
nitro-1H-pyrazole-3-carboxylic acid was converted to 1-benzyl-4-nitro-1H-
pyrazole-5-carboxylate over two steps.
Supplementary data
Supplementary data associated with this article can be found, in
26. Pyrazole 21 was prepared following the general route shown in Scheme 1. In
this case, arylation of methyl 4-nitro-1H-pyrazole-3-carboxylate followed by
ester hydrolysis provides 4-nitro-1-phenyl-1H-pyrazole-3-carboxylic acid,
following the method of Miller, T. A. Sloman, D. L.; Stanton, M. G.; Wilson, K.
J.; Witter, D. J. PCT Int. Appl. 2007, WO 2007087129. Subsequent conversion of
the carboxylic acid moiety to a primary bromide may be effected as described
References and notes
1. Erhardt, S.; Schwieler, L.; Nilsson, L.; Linderholm, K.; Engberg, G. Physiol. Behav.
2007, 92, 203.
2. Erhardt, S.; Olsson, S. K.; Engberg, G. CNS Drugs 2009, 23, 91.