4942
A. Rusin et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4939–4943
References and notes
1. Middleton, E.; Kandaswami, C.; Theoharides, T. C. Pharmacol. Rev. 2000, 52, 673.
2. Dixon, R. A.; Ferreira, D. Phytochemistry 2002, 60, 205.
3. Banerjee, S.; Li, Y.; Wang, Z.; Sarkar, F. H. Cancer Lett. 2008, 269, 226.
4. Somjen, D.; Amir-Zaltsman, Y.; Gayer, B.; Kulik, T.; Knoll, E.; Stern, N.; Lu, L. J.;
Toldo, L.; Kohen, F. J. Endocrinol. 2002, 173, 415.
5. Wang, S. F.; Jiang, Q.; Ye, Y. H.; Li, Y.; Tan, R. X. Bioorg. Med. Chem. 2005, 13,
4880.
6. Meng, Q. H.; Lewis, P.; Wahala, K.; Adlercreutz, H.; Tikkanen, M. J. Biochim.
Biophys. Acta 1999, 1438, 369.
7. Matsumoto, T.; Kobayashi, T.; Kikuchi, T.; Honda, T.; Kamata, K. J. Smooth
Muscle Res. 2005, 41, 23.
8. Wang, J.; Shang, F.; Jing, R.; Liu, L.; Wang, S.; Hou, J.; Huan, M.; Mei, Q. J.
Pharmacol. Sci. 2007, 104, 82.
9. Zhang, L. N.; Xiao, Z. P.; Ding, H.; Ge, H. M.; Xu, C.; Zhu, H. L.; Tan, R. X. Chem.
Biodivers. 2007, 4, 248.
10. Kohen, F.; Gayer, B.; Kulik, T.; Frydman, V.; Nevo, N.; Katzburg, S.; Limor, R.;
Sharon, O.; Stern, N.; Somjen, D. J. Med. Chem. 2007, 50, 6405.
11. Ogawara, H.; Akiyama, T.; Watanabe, S.; Ito, N.; Kobori, M.; Seoda, Y. J. Antibiot.
1989, 42, 340.
12. Booth, C.; Hargreaves, D. F.; Hadfield, J. A.; McGown, A. T.; Potten, C. S. Br. J.
Cancer 1999, 80, 1550.
13. Uckun, F. M.; Narla, R. K.; Zeren, T.; Yanishevski, Y.; Myers, D. E.; Waurzyniak,
B.; Ek, O.; Schneider, E.; Messinger, Y.; Chelstrom, L. M.; Gunther, R.; Evans, W.
Clin. Cancer Res. 1998, 4, 1125.
14. Messinger, Y.; Yanishevski, Y.; Ek, O.; Zeren, T.; Waurzyniak, B.; Gunther, R.;
Chelstrom, L.; Chandan-Langlie, M.; Schneider, E.; Myers, D. E.; Evans, W.;
Uckun, F. M. Clin. Cancer Res. 1998, 4, 165.
Figure 4. Immunofluorescent staining of b-tubulin in interphase DU 145 cells. Cells
were treated with a vehiculum (control) or indicated drugs for 24 h. (A) Control; (B)
100 lM genistein; (C) 5 lM G21; (D) 25 lM G21; (E) 1 nM vinblastine; (F) 2 nM
paclitaxel, (note that concentration in C, E, F are equitoxic and correspond to 50%
cytotoxicity). G21, vinblastine and paclitaxel cause different perturbations of
microtubule array described in details in the text. Genistein does not induce any
15. Grynkiewicz, G.; Szeja, W.; Boryski, J. Acta Pol. Pharm. 2008, 65, 655.
´
P.; Ramza, J.; Pucko, W.;
16. Polkowski, K.; Popiolkiewicz, J.; Krzeczynski,
Zegrocka-Stendel, O.; Boryski, J.; Skierski, J. S.; Mazurek, A. P.; Grynkiewicz,
G. Cancer Lett. 2004, 203, 59.
17. Popiolkiewicz, J.; Polkowski, K.; Skierski, J. S.; Mazurek, A. P. Cancer Lett.. 2005
2005, 229, 67.
changes in microtubule array. Scale bar—10 lm.
18. Achmatowicz, O.; Grynkiewicz, G.; Pucko, W.; Mazurek, A.; Polkowski, K.;
Boryski, J.; Szeja, W.; Szelejewski W.; Opolski, A.; Pastuch-Gawolek, G.;
Radzikowski, C.; Szechner, B.; Wietrzyk, J.; Skierski, J.; Wandzik, I.;
Krzeczyn´ ski, P. Polish Patent P-346955; PCT/PL02/000029, 2002.
19. Lewis, P. T.; Wahala, K.; Hoikkala, A.; Mutikainen, I.; Meng, Q. H.; Adlercreutz,
H.; Tikkanen, M. J. Tetrahedron 2000, 56, 7805.
20. Wang, S. F.; Jiang, Q.; Ye, Y. H.; Li, Y.; Tan, R. X. Bioorg. Med. Chem. 2005, 13,
4880.
21. Chern, J. H.; Shia, K. S.; Hsu, T. A.; Tai, C. L.; Lee, C. C. Bioorg. Med. Chem. Lett.
2004, 14, 2519.
22. ElAshry, H. S. H.; Awad, L. F.; Atta, A. I. Tetrahedron 2006, 62, 2943.
23. Szeja, W.; Grynkiewicz, G. In Handbook of Glycosylation; Demchenko, A., Ed.;
Wiley-VCH: Weinheim, 2008; pp 329–361.
24. Ferrieres, V.; Blanchard, S.; Fischer, D.; Plusquellec, D. Bioorg. Med. Chem. Lett.
2002, 12, 3515.
Genistein—as expected—caused no alteration of microtubule ar-
ray even at 100 M concentration. At the concentration of G21
ꢁIC50 (5 M) the microtubule network was markedly loosened at
l
l
the cell periphery (Fig. 4C) and microtubules acquired characteris-
tic, curly appearance, resembling the pattern described for vinblas-
tine used at ꢁIC50 concentration (Fig. 4E). This pattern was
essentially different from the one observed for cells treated with
paclitaxel (Fig. 4F), where microtubule network was noticeably
denser than in control cells or the ones treated with genistein,
G21 and vinblastine. It has to be noted that at high concentration
25. Priebe, W.; Zamojski, A. Tetrahedron 1980, 36, 287.
26. Demchenko, A. V.; Malysheva, N. N.; De Meo, C. Org. Lett. 2003, 5, 455.
27. Procedure for synthesis of benzothiazoyl glycosyl donor: A solution of the per-O-
acetyl-lactal (1 mM), 2-mercapto-benzothiazol (1 mM) in CH2Cl2 (2 mL) and
freshly activated molecular sieves (3 Å, 0.2 g) was stirred under argon for
10 min, InCl3 (0.15 mM) was added. The reaction mixture was then stirred for
60 min under reflux. Upon completion (TLC), the reaction mixture was diluted
with CH2Cl2 (10 mL), the solid was filtered-off and the residue was washed
with CH2Cl2 (5 mL). The combined filtrate was washed with 5% aq NaHCO3
(3 ꢂ 10 mL), dried (MgSO4) and concentrated in vacuo. The residue was
purified by column chromatography on silica gel (chloroform) to allow the
thioglycoside as colorless oil (600 mg, yield 83%). The structure was confirmed
by 1H NMR (CDCl3) d (ppm) 1.98 (s, 3H), 2.02 (s, 6H), 2.07 (s, 3H), 2,18 (s,3H),
3.90–4.34 (m, 7H), 4.62 (d, 1H, J = 8 Hz), 5.05 (dd, 1H, J1 = 10.2 Hz, J2 = 3.4 Hz),
5.24 (dd, 1H, J2 = 7.6 Hz), 5.42 (d, 1H, J = 2.8 Hz), 5.72 (d, 1H, J = 2.6 Hz), 5.94
(ddd, 1H, J1 = 10.2 Hz, J2 = J3 = 2.5 Hz), 6.31(ddd, 1H, J2 = J3 = 0.8 Hz), 6.54 (d,
1H, J = 2.2 Hz), 6.62 (d,1H, J = 2.2 Hz), 6.95 (dd, 2H, J1 = 6.6 Hz, J2 = 2.2 Hz), 7.53
(dd, 2H), 8.01 (d, 1H), 8.19 (d, 1H). Procedure for synthesis of G21: A mixture of
the glycosyl donor (Fig. 1, Formula 3) (0.1 mM) and genistein (Fig. 1, Formula
4) (0.15 mM) in CH2Cl2 (2 mL) was sonificated for 30 min, freshly activated
molecular sieves (3 Å, 0.2 g), Cu(OTf)2 (0.15 mM) was added and reaction
mixture was stirred under argon for 1 h at room temp. Upon completion, the
reaction mixture was diluted with CH2Cl2 (10 mL), the solid was filtered-off
and the residue was washed with CH2Cl2 (10 mL). The combined filtrate was
washed with aq NaHCO3 and water (3 ꢂ 10 mL), dried (MgSO4) and
concentrated in vacuo. The residue was purified by column chromatography
on silica gel (chloroform) to allow the genistein glycoside as amorphous solid
(630 mg, yield 76%).
of G21 (25 lM) microtubules disappeared almost completely
(Fig. 4D). The ability of G21 to influence the structure of microtu-
bule network, and to induce mitotic spindle aberration was not
limited to DU 145 cells, and comparable effects were also observed
in other cell lines under study (not shown).
In summary, we have found a new method for the regio- and
stereoselective synthesis of the glycosyl genistein derivative,
G21. Extensive biological studies have shown that this compound
acts as a microtubule destabilizing agent. This ability has not been
reported previously for any isoflavonoid derivative.
Acknowledgments
We are grateful to Dr Tadeusz Bieg for his help with NMR exper-
iments and to Krystyna Klyszcz for technical assistance. This work
was supported by grant of Foundation for Supporting of Polish
Pharmacy and Medicine (06/FB/2004) and partially by grant of
Ministry of Science and Higher Education (PBZ-MNiI-1/1/2005).
Supplementary data
28. Cell culture conditions: Cells were grown at 37 °C, in humidified atmosphere
enriched with CO2 (5%) in RPMI 1640 medium (Sigma–Aldrich, Germany)
supplemented with non-inactivated fetal bovine serum (FBS) (10%; GIBCO
Effect of G21, lactal, genistein and mixture of these compounds
on the proliferation of human prostate cancer cells DU 145 and
human colon carcinoma cells HCT 116. NMR spectra of G21. Sup-
plementary data associated with this article can be found, in the
Invitrogen, UK) and gentamicin sulfate (40 l
g mLꢀ1; Sigma–Aldrich, Germany).
29. Flow cytometry: Floating cells were collected and added to adherent cells,
harvested by trypsinization. Cells were washed with PBS and then fixed in ice-
cold ethanol (70%) for 30 min, treated with RNase (100 l
g mLꢀ1) and stained