One of the chief focuses of our research group has been
the development of enabling technologies for flow chem-
istry which reduce manual downstream processing tasks
such as isolation and purification. For example, we and
others have advocated the use of polymer-supported re-
agents and scavengers to capture impurities in-line,8 allow-
ing either the direct collection of pure material from flow
reactors or direct use of the reaction stream in multistep
sequences.9 In certain “simple” workup processes such as
extraction and acid or base washes, however, liquid-phase
workup procedures would be preferable to solid-phase
procedures if they could be readily conducted in flow.
We and other groups have therefore sought to develop
tools for automated in-line aqueous workups and phase
separations for flow synthesis as a complementary down-
stream processing technique to solid-phase techniques.10
Recently, we reported the invention of a syringe pump
and camera-based liquidꢀliquid phase separation tool
and its application to reactions requiring a single phase
separation.11 Here, we disclose the development of a
modular second-generation high-pressure pump system
which allows solvent-independent, multiple consecutive phase
separations and its application to the diazotization of amino
acids in flow.
Scheme 1. Detailed Schematic of a Single Extractor
(Configuration A: Heavy Phase Further Processed)
The basic schematicfor a singleextractor isshownabove
(Scheme 1). The reaction stream from a flow reactor enters
the first extractor which mixes the reaction stream with
an extraction solvent. The biphasic stream then enters the
top of a small (3 mm diameter) glass separating column
Scheme 2. Detailed Schematic of a Single Extractor
(Configuration B: Lighter Phase Further Processed)
(6) (a) Browne, D. L.; Deadman, B. J.; Ashe, R.; Baxendale, I. R.;
Ley, S. V. Org. Process Res. Dev. 2011, 15, 693. (b) Sedelmeier, J.; Ley,
S. V.; Baxendale, I. R.; Baumann, M. Org. Lett. 2010, 12, 3618. (c) Noel,
T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen, K. F.;
Buchwald, S. l. Chem. Sci. 2011, 2, 287. (d) Cintas, P.; Mantegna, S.;
Gaudino, E. C.; Cravotto, G. Ultrason. Sonochem. 2010, 17, 985.
(7) Browne, D. L.; Baumann, M.; Harji, B. H.; Baxendale, I. R.; Ley,
S. V. Org. Lett. 2011, 13, 3312.
(8) (a) Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D.
Angew. Chem., Int. Ed. 2009, 48, 4017. (b) Lange, H.; Capener, M. J.;
Jones, A. X.; Smith, C. J.; Nikbin, N.; Baxendale, I. R.; Ley, S. V. Synlett
2011, 869. (c) Baumann, M.; Baxendale, I. R.; Kirschning, A.; Ley, S. V.
Heterocycles 2010, 82, 1297. (d) Baumann, M.; Baxendale, I. R.; Martin,
L. J.;Ley, S. V. Tetrahedron 2009, 65, 6611. (e) Mennecke, K.; Kirschning,
A. Beilstein J. Org. Chem. 2009, 5, No. 21. (f) Smith, C. D.; Baxendale,
I. R.; Tranmer, G. K.; Baumann, M.; Smith, S. C.; Lewthwaite, R.; Ley,
S. V. Org. Biomol. Chem. 2007, 5, 1562. (g) Kirschning, A.; Solodenko,
W.; Mennecke, K. Chem.;Eur. J. 2006, 12, 5972. (h) Hodge, P. Ind. Eng.
Chem. Res. 2005, 44, 8542. (i) Ley, S. V.; Baxendale, I. R.; Bream, R. N.;
Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.;
Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1 2000,
3815–4195.
(9) For natural product syntheses employing solid-supported re-
agents in flow, see: (a) Baxendale, I. R.; Deeley, J.; Griffiths-Jones,
C. M.; Ley, S. V.; Saaby, S.; Tranmer, G. K. Chem. Commun. 2006, 2566.
(b) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K.
Synlett 2006, 3, 427. (c) Baumann, M.; Baxendale, I. R.; Brasholz, M.;
Hayward, J. J.; Ley, S. V.; Nikbin, N. Synlett 2011, 1375.
through a stainless steel tube within a T-piece connector.
Inside the phase-separating column is a small, colored
polymer float of an intermediate density between the
organic and aqueous phases such that it remains at the
interface. The bottom of the phase-separating column is
connected to a computer-controlled high-pressure pump
with a back pressure regulator (75ꢀ100 psi). When the
flow rate of the high-pressure pump is lower than that of
the mixed incoming streams, the upper layer overflows out
of the top of the separating column. The computer uses a
digital high-resolution camera to monitor the colored bead
in the column and provides damped feedback to the high-
pressure pump according to the level of the interface
(10) (a) Hall, J. F. B.; Han, X.; Poliakoff, M.; Bourne, R. A.; George,
ꢀ
M. W. Chem. Commun. 2012, 48, 3073. (b) Sprecher, H.; Payan,
M. N. P.; Weber, M.; Yilmaz, G.; Wille, G. J. Flow Chem. 2012, 2, 20.
(c) Castell, O. K.; Allender, C. J.; Barrow, D. A. Lab Chip 2009, 9, 388.
(d) Hornung, C. H.; Mackley, M. R.; Baxendale, I. R.; Ley, S. V. Org.
Process Res. Dev. 2007, 11, 399. (e) Sahoo, H. R.; Kralji, J. G.; Jensen,
K. F. Angew. Chem., Int. Ed. 2007, 46, 5704. (f) Kralji, J. G.; Sahoo,
H. R.; Jensen, K. F. Lab Chip 2007, 7, 256. (g) Kolehmainen, E.;
Turunen, I. Chem. Eng. Process. 2007, 46, 834. (h) Atallah, R. H.;
Ruzicka, J.; Christian, G. D. Anal. Chem. 1987, 59, 2909.
(11) O’Brien, M.; Koos, P.; Browne, D. L.; Ley, S. V. Org. Biomol.
Chem. 2012, in press. DOI: 10.1039/C2OB25912E.
Org. Lett., Vol. 14, No. 16, 2012
4247