Discovery of Potent Cell Migration Inhibitors
A R T I C L E S
Scheme 1. Structure of Migrastatin and Related Natural Products
such as the epothilones,6 taxol,7 and, most recently, radicicol8
and TMC-95A/B.9 The recent entry of 12,13-desoxyepothilone
B (dEpoB), first prepared by total chemical synthesis, into phase
II clinical trials,10 has been followed by the discovery of a new
generation of highly potent epothilone analogues.11 For the most
part, our endeavors have converged on cytotoxic agents. The
possibility of exploiting natural products as leads for the
development of anti-angiogenic and anti-metastatic agents was
prompted by the recent isolation and synthesis of compounds
such as epoxyquinol A and B,12 trachyspic acid,13 azaspirene,14
evodiamine,15 motuporamines,16 borrelidin,17 and terpestacin.18
In particular, a series of independent reports by Imoto19 and
Kosan Bioscience researchers20 on the discovery of the natural
product migrastatin (1) enhanced our interest in this area
(Scheme 1). It was reported that 1, isolated from a cultured broth
of Streptomyces, has the potential of metastasis suppression
through its ability to inhibit tumor cell migration. Although the
reported activity of migrastatin in a wound-healing assay was
rather modest (IC50 value of 29 µM), we considered it as an
attractive lead compound in the search for other, more potent
agents. The structure of migrastatin (1), determined by X-ray
crystal structure analysis, features a 14-membered macrolactone
(6) For comprehensive reviews, see: (a) Harris, C. R.; Danishefsky, S. J. J.
Org. Chem. 1999, 64, 8434-8456. (b) Stachel, S. J.; Biswas, K.;
Danishefsky, S. J. Curr. Pharm. Des. 2001, 7, 1277-1290.
(14) For the isolation of azaspirene, see: (a) Asami, Y.; Kakeya, H.; Onose,
R.; Yoshida, A.; Matsuzaki, H.; Osada, H. Org. Lett. 2002, 4, 2845-2848.
For the synthesis of azaspirene, see: (b) Hayashi, Y.; Shoji, M.; Yamaguchi,
J.; Sato, K.; Yamaguchi, S.; Mukaiyama, T.; Sakai, K.; Asami, Y.; Kakeya,
H.; Osada, H. J. Am. Chem. Soc. 2002, 124, 12078-12079.
(15) A screening approach revealed evodiamine as a potent anti-invasive and
anti-metastatic agent: (a) Ogasawara, M.; Matsubara, T.; Suzuki, H. Biol.
Pharm. Bull. 2001, 24, 720-723. (b) Ogasawara, M.; Matsubara, T.; Suzuki,
H. Biol. Pharm. Bull. 2001, 24, 917-920. (c) Ogasawara, M.; Matsunaga,
T.; Takahashi, S.; Saiki, I.; Suzuki, H. Biol. Pharm. Bull. 2002, 25, 1491-
1493.
(16) For the isolation, synthesis, and discussion of the anti-angiogenic properties
of the motuporamines, see: (a) Williams, D. E.; Lassota, P.; Andersen, R.
J. J. Org. Chem. 1998, 63, 4838-4841. (b) Roskelley, C. D.; Williams, D.
E.; McHardy, L. M.; Leong, K. G.; Troussard, A.; Karsan, A.; Andersen,
R. J.; Dedhar, S.; Roberge, M. Cancer Res. 2001, 61, 6788-6794. (c)
Williams, D. E.; Craig, K. S.; Patrick, B.; McHardy, L. M.; van Soest, R.;
Roberge, M.; Andersen, R. J. J. Org. Chem. 2002, 67, 245-258.
(17) For the discovery of the anti-angiogenic properties of borrelidin, see: (a)
Wakabayashi, T.; Kageyama, R.; Naruse, N.; Tsukahara, N.; Funahashi,
Y.; Kitoh, K.; Watanabe, Y. J. Antibiot. 1997, 50, 671-676. For the
synthesis of borrelidin, see: (b) Duffey, M. O.; LeTiran, A.; Morken, J. P.
J. Am. Chem. Soc. 2003, 125, 1458-1459.
(18) For the discovery of the anti-angiogenic properties of terpestacin, see: (a)
Jung, H. J.; Lee, H. B.; Kim, C. J.; Rho, J. R.; Shin, J.; Kwon, H. J. J.
Antibiot. 2003, 56, 492-496. For the synthesis of terpestacin, see: (b)
Tatsuta, K.; Masuda, N. J. Antibiot. 1998, 51, 602-606. (c) Myers, A. G.;
Siu, M.; Ren, F. J. Am. Chem. Soc. 2002, 124, 4230-4232. (d) Chan, J.;
Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 11514-11515.
(7) Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L.
B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo,
C. A.; Coburn, C. A.; DiGrandi, M. J. J. Am. Chem. Soc. 1996, 118, 2843-
2859.
(8) For the synthesis and biological evaluation of radicicol and cyclopropyl-
radicicol, see: (a) Garbaccio, R. M.; Stachel, S. J.; Baeschlin, D. K.;
Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 10903-10908. (b)
Yamamoto, K.; Garbaccio, R. M.; Stachel, S. J.; Solit, D. B.; Chiosis, G.;
Rosen, N.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 1280-
1284. (c) Yang, Z. Q.; Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125,
9602-9603.
(9) For the synthesis and evaluation of TMC-95A/B, see: (a) Lin, S.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 512-515. (b) Yang,
Z. Q.; Kwok, B. H.; Lin, S.; Koldobskiy, M. A.; Crews, C. M.; Danishefsky,
S. J. Chembiochem 2003, 6, 508-513.
(10) For more information about clinical trials of dEpoB, visit: www.kosan.com.
(11) For the synthesis and biological evaluation of recent epothilone analogues,
see: (a) Rivkin, A.; Yoshimura, F.; Gabarda, A. E.; Chou, T. C.; Dong,
H.; Tong, W. P.; Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125, 2899-
2901. (b) Yoshimura, F.; Rivkin, A.; Gabarda, A. E.; Chou, T. C.; Dong,
H.; Sukenick, G.; Morel, F. F.; Taylor, R. E.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2003, 42, 2518-2521.
(12) For the isolation of epoxyquinol A and B, see: (a) Kakeya, H.; Onose, R.;
Koshino, H.; Yoshida, A.; Kobayashi, K.; Kageyama, S. I.; Osada, H. J.
Am. Chem. Soc. 2002, 124, 3496-3497. (b) Kakeya, H.; Onose, R.;
Yoshida, A.; Koshino, H.; Osada, H. J. Antibiot. 2002, 55, 829-831. For
the synthesis of epoxyquinol A and B, see: (c) Shoji, M.; Yamaguchi, J.;
Kakeya, H.; Osada, H.; Hayashi, Y. Angew. Chem., Int. Ed. 2002, 41,
3192-3194. (d) Chaomin, L.; Bardhan, S.; Pace, E. A.; Liang, M. C.;
Gilmore, T. D.; Porco, J. A., Jr. Org. Lett. 2002, 4, 3267-3270. (e) Mehta,
G.; Islam, K. Tetrahedron Lett. 2003, 44, 3569-3572.
(19) (a) Nakae, K.; Yoshimoto, Y.; Sawa, T.; Homma, Y.; Hamada, M.;
Takeuchi, T.; Imoto, M. J. Antibiot. 2000, 53, 1130-1136. (b) Nakae, K.;
Yoshimoto, Y.; Ueda, M.; Sawa, T.; Takahashi, Y.; Naganawa, H.;
Takeuchi, T.; Imoto, M. J. Antibiot. 2000, 53, 1228-1230. (c) Takemoto,
Y.; Nakae, K.; Kawatani, M.; Takahashi, Y.; Naganawa, H.; Imoto, M. J.
Antibiot. 2001, 54, 1104-1107. (d) Nakamura, H.; Takahashi, Y.; Naga-
nawa, H.; Nakae, K.; Imoto, M.; Shiro, M.; Matsumura, K.; Watanabe,
H.; Kitahara, T. J. Antibiot. 2002, 55, 442-444.
(13) For the isolation of trachyspic acid, see: (a) Shiozawa, H.; Takahashi, M.;
Takatsu, T.; Kinoshita, T.; Tanzawa, K.; Hosoya, T.; Furuya, K.; Furihata,
K.; Seto, H. J. Antibiot. 1995, 48, 357-362. For the synthesis of trachyspic
acid, see: (b) Hirai, K.; Ooi, H.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S.
Org. Lett. 2003, 5, 857-859.
(20) Woo, E. J.; Starks, C. M.; Carney, J. R.; Arslanian, R.; Cadapan, L.; Zavala,
S.; Licari, P. J. Antibiot. 2002, 55, 141-146.
9
J. AM. CHEM. SOC. VOL. 126, NO. 36, 2004 11327