Antagonists of the Platelet P2T Receptor
J ournal of Medicinal Chemistry, 1999, Vol. 42, No. 2 219
or deliquescent the sodium salt was prepared: The amine salt
was dissolved in methanol (2 mL) and treated with a 1 M
solution of sodium iodide in analytical grade acetone (30 mL).
The precipitate was collected by centrifugation, washed by
repeated suspension in analytical grade acetone (4 × 40 mL),
and recentrifugation. Finally the colorless solid product was
redissolved in deionized water and freeze-dried.
2-(Eth ylth io)-5′-a d en ylic Acid , Mon oa n h yd r id e w ith
Dich lor om eth ylen ebis(p h osp h on ic a cid ) (10c). Prepared
as the tetrasodium salt in 9% yield from 3c: 1H NMR δ(D2O)
8.33 (1H, s, H8), 6.15 (1H, d, J ) 5.29 Hz, H1′), 4.84 (1H, m,
H2′), 4.62 (1H, m, H3′), 4.42 (1H, m, H4′), 4.36 (2H, m, H5′a
and H5′b), 3.29 (2H, m, SCH2), 1.13 (3H, t, J ) 7.3 Hz,
SCH2CH3); 31P NMR δ(D2O) 9.23 (d, 1P, J ) 18.7 Hz, Pγ), 1.51
(dd, 1P, J 1 ) 18.7 Hz, J 2 ) 28.6 Hz, Pâ), -9.8 (d, 1P, J ) 28.7
Hz, PR). Anal. (C13H16Cl2N5Na4O12P3S‚4.5H2O) H, N, S; C:
calcd, 19.40; found, 20.13.
1H NMR δ(D2O) 8.38 (1H, s, H8), 6.13 (1H, d, J ) 5.7 Hz, H1′),
4.60 (1H, t, J ) 4.5 Hz, H3′), 4.39 (1H, m, H4′), 4.28 (2H, m,
H5′a and H5′b), 3.34 (2H, t, J ) 6.3 Hz, SCH2), 2.69 (2H, m,
SCH2CH2CF3); 31P NMR δ(D2O) 9.22 (d, 1P, J ) 19 Hz, Pγ),
1.33 (dd, 1P, J 1 ) 19 Hz, J 2 ) 29 Hz, Pâ), -9.12 (d, 1P, J )
29.0 Hz, PR). Anal. (C14H15Cl2F3N5Na4O12P3S‚3H2O) (C, H, N,
S, H2O.
N6-(2,2,2-Tr iflu or oeth yl)-2-(3,3,3-tr iflu or op r op ylth io)-
5′-a d en ylic Acid , Mon oa n h yd r id e w ith Dich lor om eth yl-
en ebis(p h osp h on ic a cid ) (10j). Prepared as the triammo-
nium salt in 4% yield from 3j: 1H NMR δ(D2O) 8.32 (1H, s,
H8), 6.60 (1H, d, J ) 5.7 Hz, H1′), 4.68 (1H, m, H2′), 4.52 (1H,
m, H3′), 4.32-4.20 (5H, m, H4′ + H5′a and H5′b + NHCH2-
CF3), 3.24 (2H, m, SCH2), 2.60 (2H, m, SCH2CH2CF3); 31P NMR
δ(D2O) 8.82 (d, 1P, J ) 18.6 Hz, Pγ), 0.63 (dd, 1P, J 1 ) 18.9
Hz, J 2 ) 28.9 Hz, Pâ), -9.43 (d, 1P, J ) 29.0 Hz, PR). Anal.
(C16H29Cl2F6N8O12P3S‚4H2O) C, H, N, H2O; S: calcd, 3.53;
found, 2.90.
2-(P r op ylth io)-5′-a d en ylic Acid , Mon oa n h yd r id e w ith
Diflu or om eth ylen ebis(p h osp h on ic a cid ) (10d ). Prepared
as a triammonium salt in 5% yield from 3d : 1H NMR δ(D2O)
8.28 (1H, s, H8), 6.01 (1H, d, J ) 4.6 Hz, H1′), 4.80 (1H, m,
H2′), 4.46 (1H, m, H3′), 4.28 (1H, m, H4′), 4.15 (2H, m, H5′a
and H5′b), 3.05 (2H, t, J ) 6.9 Hz, SCH2), 1.63 (2H, m,
SCH2CH2CH3), 0.91 (3H, t, J ) 7.3 Hz, SCH2CH2CH3); 31P
N6-(2-Met h oxyet h yl)-2-(3,3,3-t r iflu or op r op ylt h io)-5′-
a d en ylic Acid , Mon oa n h yd r id e w ith Dich lor om eth yl-
en ebis(p h osp h on ic a cid ) (10k ). Prepared as the tetrasodi-
um salt in 10% yield from 3k : 1H NMR δ(D2O) 8.36 (1H, s,
H8), 6.10 (1H, d, J ) 5.8 Hz, H1′), 4.88 (1H, m, H2′), 4.60 (1H,
m, H3′), 4.41 (1H, m, H4′), 4.38 (2H, m, H5′a and H5′b), 3.81
(2H, m, NHCH2CH2OCH3), 3.78 (2H, m, NHCH2CH2OCH3),
3.46 (3H, s, OCH3), 3.23 (2H, m, SCH2), 2.57 (2H, m, SCH2CH2-
CF3); 31P NMR δ(D2O) 9.0 (d, 1P, J ) 18.9 Hz, Pγ), 1.54 (dd,
1P, J 1 ) 18.8 Hz, J 2 ) 29.3 Hz, Pâ), -9.9 (d, 1P, J ) 29.7 Hz,
PR). Anal. (C17H21Cl2F3N5Na4O13P3S‚7H2O) C, H, N; S: calcd,
3.28; found, 2.81.
NMR δ(D2O) 4.85 (dt, 1P, J ) 53 Hz, Pγ), -1.71 (ddt, 1P, J 1
)
52 Hz, J 2 ) 28.9 Hz, Pâ), -9.44 (d, 1P, J ) 28.9 Hz, PR). Anal.
(C14H31F2N8O12P3S‚4H2O) C, H, N; S: calcd, 4.34; found, 4.89.
2-(P r op ylth io)-5′-a d en ylic Acid , Mon oa n h yd r id e w ith
Dich lor om eth ylen ebis(p h osp h on ic a cid ) (10e). Prepared
as the tetrasodium salt in 7% yield from 3d : 1H NMR δ(D2O)
8.34 (1H, s, H8), 6.11 (1H, d, J ) 5.1 Hz, H1′), 4.81 (1H, m,
H2′), 4.66 (1H, m, H3′), 4.44 (1H, m, H4′), 4.32 (2H, m, H5′a
and H5′b), 3.15 (2H, t, J ) 6.8 Hz, SCH2), 1.76 (2H, m,
SCH2CH2CH3), 1.04 (3H, t, J ) 7.3 Hz, SCH2CH2CH3); 31P
N6-(2-Meth ylth ioeth yl)-2-(3,3,3-tr iflu or op r op ylth io)-5′-
a d en ylic Acid , Mon oa n h yd r id e w ith Dich lor om eth yl-
en ebis(p h osp h on ic a cid ) (10l). Prepared as the triammo-
nium salt in 4% yield from 3l: 1H NMR δ(D2O) 8.30 (1H, s,
H8), 5.97 (1H, d, J ) 5.5 Hz, H1′), 4.65 (1H, m, H2′), 4.47 (1H,
m, H3′), 4.28 (1H, m, H4′), 4.17 (2H, m, H5′a and H5′b), 3.67
(br s, NHCH2), 3.21 (2H, t, J ) 7.6 Hz, SCH2), 2.72 (2H, t, J
) 6.6 Hz, SCH2CH2CF3), 2.58 (2H, m, NCH2CH2), 2.04 (3H, s,
SCH3); 31P NMR δ(D2O) 8.80 (d, 1P, J ) 18.6 Hz, Pγ), 0.42
(dd, 1P, J 1 ) 18.9 Hz, J 2 ) 28.9 Hz, Pâ), -9.41 (d, 1P, J ) 29.0
Hz, PR). Anal. (C17H34Cl2F3N8O12P3S2‚3H2O) H, N, S; C: calcd,
23.16; found, 23.66.
Biologica l Assa ys. The affinity of the test compounds for
the P2T receptor was assayed using washed human platelets
by the method of Humphries et al.11 Antithrombotic activity
was measured using a cyclic flow reduction model in dog
femoral artery.21 Functional kinetics of the compounds were
determined in the anesthetized rat by the method of Humphries
et al.22
δNMR (D2O) 9.15 (d, 1P, J ) 18.6 Hz, Pγ), 1.39 (dd, 1P, J 1
)
18.7 Hz, J 2 ) 28.9 Hz, Pâ), -9.6 (d, 1P, J ) 28.9 Hz, PR). Anal.
(C14H18Cl2N5Na4O12P3S‚3H2O) C, H, N, S.
N6-(2,2,2-Tr iflu or oeth yl)-2-(pr opylth io)-5′-aden ylic Acid,
Mon oa n h yd r id e w ith Dich lor om eth ylen ebis(p h osp h o-
n ic a cid ) (10f). Prepared as the tetrasodium salt in 12% yield
from 3f: 1H NMR δ(D2O) 8.25 (1H, s, H8), 5.95 (1H, d, J )
5.7 Hz, H1′), 4.84 (1H, m, H2′), 4.63 (1H, m, H2′), 4.50 (1H,
m, H3′), 4.27-4.12 (5H, m, H4′, H5′a and H5′b, NCH2), 2.97
(2H, t, J ) 6.8 Hz, SCH2), 1.58 (2H, m, SCH2CH2CH3), 0.86
(3H, t, J ) 7.35 Hz, SCH2CH2CH3); 31P NMR δ(D2O) 9.70 (d,
1P, J ) 18.5 Hz, Pγ), 3.43 (dd, 1P, J 1 ) 18.5 Hz, J 2 ) 30.38
Hz, Pâ), -9.20 (d, 1P, J ) 30.41 Hz, PR). Anal. (C16H19F3Cl2N5-
Na4O12P3S‚9H2O) C, H, N, S, H2O.
N6-(2-Meth oxyeth yl)-2-(p r op ylth io)-5′-a d en ylic Acid ,
Mon oa n h yd r id e w ith Dich lor om eth ylen ebis(p h osp h o-
n ic a cid ) (10 g). Prepared as the tetrasodium salt in 6% yield
from 3g: 1H NMR δ(D2O) 8.39 (1H, s, H8), 6.14 (1H, d, J )
5.85 Hz, H1′), 4.84 (1H, m, H2′), 4.66 (1H, m, H3′), 4.44 (1H,
m, H4′), 4.32 (2H, m, H5′a and H5′b), 3.86 (2H, m, NHCH2CH2-
OCH3), 3.80 (2H, m, NHCH2CH2OCH3), 3.46 (3H, s, OCH3),
3.22 (2H, t, J ) 7.1 Hz, SCH2), 1.80 (2H, m, SCH2CH2CH3),
1.07 (3H, t, J ) 7.35 Hz, SCH2CH2CH3); 31P NMR δ(D2O) 9.05
(d, 1P, J ) 18.7 Hz, Pγ), 1.44 (dd, 1P, J 1 ) 18.8 Hz, J 2 ) 29.3
Hz, Pâ), -9.4 (d, 1P, J ) 29.5 Hz, PR). Anal. (C17H24Cl2N5-
Na4O13P3S‚2H2O) C, N, S; H: calcd, 3.16; found, 3.82.
N6-(2-Meth ylth ioeth yl)-2-(p r op ylth io)-5′-a d en ylic Acid ,
Mon oa n h yd r id e w ith Dich lor om eth ylen ebis(p h osp h o-
n ic a cid ) (10h ). Prepared as the triammonium salt in 6% yield
from 3h : 1H NMR δ(D2O) 8.32 (1H, s, H8), 6.05 (1H, d, J )
5.5 Hz, H1′), 4.71 (1H, m, H2′), 4.52 (1H, m, H3′), 4.38 (1H,
m, H4′), 4.24 (2H, m, H5′a and H5′b), 3.67 (br s, NHCH2), 3.15
(2H, t, J ) 6.9 Hz, SCH2), 2.58 (2H, m, NCH2CH2), 2.04 (3H,
s, SCH3), 1.72 (2H, m, SCH2CH2CH3), 1.04 (3H, t, J ) 7.2 Hz,
SCH2CH2CH3); 31P NMR δ(D2O) 8.83 (d, 1P, J ) 18.6 Hz, Pγ),
0.49 (dd, 1P, J 1 ) 18.9 Hz, J 2 ) 28.9 Hz, Pâ), -9.48 (d, 1P, J
) 29.0 Hz, PR). Anal. (C17H37Cl2N8O12P3S2‚3H2O) C, H, N, S.
2-(3,3,3-Tr iflu or opr opylth io)-5′-aden ylic Acid, Mon oan -
h yd r id e w ith Dich lor om eth ylen ebis(p h osp h on ic a cid )
(10i). Prepared as the tetrasodium salt in 21% yield from 5:
Refer en ces
(1) Burnstock, G.; Kennedy, C. Is There a Basis for Distinguishing
Two Types of P2 Purinoceptor? Gen. Pharmacol. 1985, 16, 433-
440.
(2) Gordon, J . L. Extracellular ATP: Effects, Sources and Fate.
Biochem. J . 1986, 233, 309-319.
(3) Burnstock, G. P2 Purinoceptors: Historical Perspective and
Classification. In P2 Purinoceptors: Localisation, Function and
Transduction Mechanisms (Ciba Foundation Symposium 1995);
Chadwick, D. J ., Goode, J . A., Eds.; J ohn Wiley and Sons:
Chichester, 1996; pp 1-29.
(4) Daniel, J . L.; Dangelmaier, C.; J in, J .; Ashby, B.; Smith, J . B.;
Kunapuli, S. P. Molecular Basis for ADP-induced Platelet
Activation. J . Biol. Chem. 1998, 273, 2024-2029.
(5) Gerster, J . F.; J ones, J . W.; Robins, R. K. Purine Nucleosides
IV. The Synthesis of 6-Halogenated 9-â-D-Ribofuranosylpurines
from Inosine and Guanosine. J . Org. Chem. 1963, 28, 945-948.
(6) Nair, V.; Young, D. A. Photoinduced Alkylthiolation of Haloge-
nated Purine Nucleosides. Synthesis 1986, 450-453.
(7) Nair, V.; Richardson, S. G. Modification of Nucleic Acid Bases
via Radical Intermediates: Synthesis of Dihalogenated Purine
Nucleosides. Synthesis 1982, 670-672.
(8) Kikugawa, K.; Suehiro, H.; Yanase, R.; Aoki, A. Platelet Ag-
gregation Inhibitors. IX. Chemical Transformation of Adenosine
into 2-Thioadenosine Derivatives. Chem. Pharm. Bull. (Tokyo)
1977, 25, 1959-1969.
(9) Yoshikawa, M.; Kato, T.; Takenishi, T. A Novel Method for
Phosphorylation of Nucleosides to 5′-Nucleotides. Tetrahedron
Lett. 1967, 5065-5068.