The Journal of Organic Chemistry
Page 16 of 17
1
2
3
4
5
6
7
8
9
Recent advances in asymmetric organocatalysis mediated by bifunctional amine–thioureas bearing multiple hydrogen-bonding
donors. Chem. Commun. 2015, 51, 1185–1197; d) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Bifunctional
Amine‐Squaramides: Powerful Hydrogen‐Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions. Adv. Synth. Catal.
2015, 357, 253–281; e) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Hydrogen‐Bonding in Aminocatalysis: From Proline and Beyond.
Chem. Eur. J. 2014, 20, 358–368.
6 a) Rissanen, K. Halogen bonded supramolecular complexes and networks. CrystEngComm 2008, 10, 1107–1113; b) Lommerse, J.
P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or
Nitrogen. J. Am. Chem. Soc. 1996, 118, 3108–3116.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
7
a) Riel, A. M. S.; Jessop, M. J.; Decato, D. A.; Massena, C. J.; Nascimento, V. R.; Berryman, O. B. Experimental investigation of
halogen-bond hard–soft acid–base complementarity. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2017, 73, 203–209; b)
Robertson, C. C.; Perutz, R. N.; Brammer, L.; Hunter, C. A. A solvent-resistant halogen bond. Chem. Sci. 2014, 5, 4179–4183.
8 Bruckmann, H. A.; Pena, M. A.; Bolm, C. Organocatalysis through Halogen-Bond Activation. Synlett 2008, 900–902.
9
a) Haraguchi, R.; Hoshino, S.; Sakai, M.; Tanazawa, S.; Morita, Y.; Komatsu, T.; Fukuzawa, S. Bulky iodotriazolium
tetrafluoroborates as highly active halogen-bonding-donor catalysts. Chem. Commun. 2018, 54, 10320–10323; b) Takeda, Y.;
Hisakuni, D.; Lin, C.-H.; Minakata, S. 2-Halogenoimidazolium Salt Catalyzed Aza-Diels–Alder Reaction through Halogen-Bond
Formation. Org. Lett. 2015, 17, 318–321; c) Jungbauer, S. H.; Walter, S. M.; Schindler, S.; Rout, L.; Kniep, F.; Huber, S. M. Activation
of a carbonyl compound by halogen bonding. Chem. Commun. 2014, 50, 6281–6284.
10 a) von der Heiden, D.; Detmar, E.; Kuchta, R.; Breugst, M. Activation of Michael Acceptors by Halogen-Bond Donors. Synlett 2018,
29, 1307–1313; b) Gliese, J.-P.; Jungbauer, S. H.; Huber, S. M. A halogen-bonding-catalyzed Michael addition reaction. Chem.
Commun. 2017, 53, 12052–12055.
11 a) Benz, S.; Poblador-Bahamonde, A. I.; Low-Ders, N.; Matile, S. Catalysis with Pnictogen, Chalcogen, and Halogen Bonds. Angew.
Chem. Int. Ed. 2018, 57, 5408–5412; b) Dreger, A.; Engelage, E.; Mallick, B.; Beer, P. D.; Huber, S. M. The role of charge in 1,2,3-
triazol(ium)-based halogen bonding activators. Chem. Commun. 2018, 54, 4013–4016; c) Jungbauer, S. H.; Huber, S. M. Cationic
Multidentate Halogen-Bond Donors in Halide Abstraction Organocatalysis: Catalyst Optimization by Preorganization. J. Am. Chem.
Soc. 2015, 137, 12110–12120; d) Kniep, F.; Walter, S. M.; Herdtweck, E.; Huber, S. M. 4,4′‐Azobis(halopyridinium) Derivatives:
Strong Multidentate Halogen‐Bond Donors with a Redox‐Active Core. Chem. Eur. J. 2012, 18, 1306–1310; e) Kniep, F.; Rout, L.;
Walter, S. M.; Bensch, H. K. V.; Jungbauer, S. H.; Herdtweck, E.; Huber, S. M. 5-Iodo-1,2,3-triazolium-based multidentate halogen-
bond donors as activating reagents. Chem. Commun. 2012, 48, 9299–9301; f) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M.
Halogen‐Bond‐Induced Activation of a Carbon–Heteroatom Bond. Angew. Chem. Int. Ed. 2011, 50, 7187–7191.
12
For reviews, see: a) Breugst, M.; von der Heiden, D. Mechanisms in Iodine Catalysis. Chem. Eur. J., 2018, 24, 9187–9199; b)
Bulfield, D.; Huber, S. M. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. Eur. J., 2016, 22, 14434–14450; c)
Schindler, S.; Huber, S. M. Halogen Bonds in Organic Synthesis and Organocatalysis. Top. Curr. Chem., 2014, 359, 167–203.
13 a) von der Heiden, D.; Bozkus, S.; Klussmann, M.; Breugst, M. Reaction Mechanism of Iodine-Catalyzed Michael Additions. J. Org.
Chem. 2017, 82, 4037–4043; b) Kee, C. W.; Wong, M. W. In Silico Design of Halogen-Bonding-Based Organocatalyst for Diels–Alder
Reaction, Claisen Rearrangement, and Cope-Type Hydroamination. J. Org. Chem. 2016, 81, 7459–7470; c) Nziko, V. de P. N.;
Scheiner, S. Catalysis of the Aza-Diels–Alder Reaction by Hydrogen and Halogen Bonds. J. Org. Chem. 2016, 81, 2589–2597; d)
Breugst, M.; Detmar, E.; von der Heiden, D. Origin of the Catalytic Effects of Molecular Iodine: A Computational Analysis. ACS Catal.
2016, 6, 3203 – 3212.
14 a) Kuwano, S.; Suzuki, T.; Hosaka, Y.; Arai, T. A chiral organic base catalyst with halogen-bonding-donor functionality: asymmetric
Mannich reactions of malononitrile with N-Boc aldimines and ketimines. Chem. Commun. 2018, 54, 3847–3850; b) Arai, T.; Suzuki, T.;
Inoue, T.; Kuwano, S. Chiral Bis(imidazolidine)iodobenzene (I-Bidine) Organocatalyst for Thiochromane Synthesis Using an
Asymmetric Michael/Henry Reaction. Synlett 2017, 28, 122–127; c) Lindsay, V. N. G.; Charette, A. B. Design and Synthesis of Chiral
Heteroleptic Rhodium(II) Carboxylate Catalysts: Experimental Investigation of Halogen Bond Rigidification Effects in Asymmetric
Cyclopropanation. ACS Catal. 2012, 2, 1221–1225.
15 a) Robinson, S. W.; Beer, P. D. Halogen bonding rotaxanes for nitrate recognition in aqueous media. Org. Biomol. Chem., 2017, 15,
153–159; b) Lim, J. Y. C.; Marques, I.; Ferreira, L.; Félix, V.; Beer, P. D. Enhancing the enantioselective recognition and sensing of
chiral anions by halogen bonding. Chem. Commun. 2016, 52, 5527–5530; c) Tepper, R.; Schulze, B.; Jäger, M.; Friebe, C.; Scharf, D.
H.; Görls, H.; Schubert, U. S. Anion Receptors Based on Halogen Bonding with Halo-1,2,3-triazoliums. J. Org. Chem. 2015, 80, 3139–
3150.
16
For recent reviews, see: a)H. B. Jalani, A. C. Karagöz, S. B. Tsogoeva, Synthesis 2017, 49, 29-41; b) B. Schulze, U. S. Schubert,
Chem. Soc. Rev. 2014, 43, 2522-2571.
17
Nepal, B.; Scheiner, S. Competitive Halide Binding by Halogen Versus Hydrogen Bonding: Bis‐triazole Pyridinium. Chem. Eur. J.
2015, 21, 13330–13335.
18
Kaasik, M.; Kaabel, S.; Kriis, K.; Järving, I.; Aav, R.; Rissanen, K.; Kanger, T. Synthesis and Characterisation of Chiral
Triazole‐Based Halogen‐Bond Donors: Halogen Bonds in the Solid State and in Solution. Chem. Eur. J. 2017, 23, 7337–7344.
19 For reviews on asymmetric aza-Diels-Alder reactions, see: a) Eschenbrenner‐Lux, V.; Kumar, K.; Waldmann, H. The Asymmetric
Hetero‐Diels–Alder Reaction in the Syntheses of Biologically Relevant Compounds. Angew. Chem. Int. Ed. 2014, 53, 11146–11157;
b) Masson, G.; Lalli, C.; Benohouda, M.; Dagousset, G. Catalytic enantioselective [4 + 2]-cycloaddition: a strategy to access aza-
hexacycles. Chem. Soc. Rev. 2013, 42, 902–923.
20
Hein, J. E.; Tripp, J. C., Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Copper(I)‐Catalyzed Cycloaddition of Organic Azides and
1‐Iodoalkynes. Angew. Chem. Int. Ed. 2009, 48, 8018-8021.
21
Kuijpers, B. H. M.; Dijkmans, G. C. T.; Groothuys, S.; Quaedflieg, P. J. L. M.; Blaauw, R. H.; van Delft, F. L.; Rutjes, F. P. J. T.
Copper(I)-Mediated Synthesis of Trisubstituted 1,2,3-Triazoles. Synlett. 2005, 3059–3062.
22 Worrell, B. T.; Hein, J. E.; Fokin, V. V. Halogen Exchange (Halex) Reaction of 5‐Iodo‐1,2,3‐triazoles: Synthesis and Applications of
5‐Fluorotriazoles. Angew. Chem. Int. Ed. 2012, 51, 11791–11794.
ACS Paragon Plus Environment