Letters
J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 4 791
(8) Bradshaw, J . M.; Mitaxov, V.; Waksman, G. Investigation of
phosphotyrosine recognition by the SH2 domain of the Src
kinase. J . Mol. Biol. 1999, 293, 971-985.
cate the potential therapeutic utility of this class of
signal-transduction-altering agent.
(9) Bradshaw, J . M.; Waksman, G. Molecular recognition by SH2
domains. Adv. Protein Chem. 2003, 61, 161-210.
Ack n ow led gm en t. Appreciation is expressed to
Drs. Christopher Lai and J ames Kelley of the LMC for
mass spectral analysis.
(10) The change in designation of stereochemistry to (R) at the upper
ring juncture relative to previous reports of (S) stereochemistry
is due to nomenclature only.
(11) Basanagoudar, L. D.; Siddappa, S. Synthesis of 1-(3-aminopro-
pyl)indoles and 3-indol-1-ylpropionic acids. J . Chem. Soc. C 1967,
2599-2601.
(12) Commercially available from Sigma-Aldrich Chemical Corp.
(13) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and
activity of a new generation of ruthenium-based olefin metath-
esis catalysts coordinated with 1,3-dimesityl-4,5 dihydroimida-
zol-2-ylidene ligands. Org. Lett. 1999, 1, 953-956.
(14) Rahuel, J .; Gay, B.; Erdmann, D.; Strauss, A.; GarciaEcheverria,
C.; Furet, P.; Caravatti, G.; Fretz, H.; Schoepfer, J .; Grutter, M.
G. Structural basis for specificity of GRB2-SH2 revealed by a
novel ligand binding mode. Nat. Struct. Biol. 1996, 3, 586-589.
(15) Schoepfer, J .; Fretz, H.; Gay, B.; Furet, P.; GarciaEcheverria,
C.; End, N.; Caravatti, G. Highly potent inhibitors of the Grb2-
SH2 domain. Bioorg. Med. Chem. Lett. 1999, 9, 221-226.
(16) Morelock, M. M.; Ingraham, R. H.; Betageri, R.; J akes, S.
Determination of receptor-ligand kinetic and equilibrium bind-
ing constants using surface plasmon resonance: Application to
the lck SH2 domain and phosphotyrosyl peptides. J . Med. Chem.
1995, 38, 1309-1318.
(17) Yao, Z. J .; King, C. R.; Cao, T.; Kelley, J .; Milne, G. W. A.; Voigt,
J . H.; Burke, T. R. Potent inhibition of Grb2 SH2 domain binding
by non-phosphate-containing ligands. J . Med. Chem. 1999, 42,
25-35.
(18) Shi, Z.-D.; Lee, K.; Liu, H.; Zhang, M.; Roberts, L. R.; Worthy,
K. M.; Fivash, M. J .; Fisher, R. J .; Yang, D.; Burke, T. R., J r. A
novel macrocyclic tetrapeptide mimetic that exhibits low-pico-
molar Grb2 SH2 domain-binding affinity. Biochem. Biophys. Res.
Commun. 2003, 310, 378-383.
Su p p or tin g In for m a tion Ava ila ble: Synthetic proce-
dures and spectral characterization for compounds 6, 6s, 8-14,
16, and 18. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces
(1) Fairlie, D. P.; Abbenante, G.; March, D. R. Macrocyclic
peptidomimeticssforcing peptides into bioactive conformations.
Curr. Med. Chem. 1995, 2, 654-686.
(2) McGeary, R. P.; Fairlie, D. P. Macrocyclic peptidomimetics:
potential for drug development. Curr. Opin. Drug Discovery Dev.
1998, 1, 208-217.
(3) Furet, P.; Gay, B.; Caravatti, G.; GarciaEcheverria, C.; Rahuel,
J .; Schoepfer, J .; Fretz, H. Structure-based design and synthesis
of high affinity tripeptide ligands of the Grb2-SH2 domain. J .
Med. Chem. 1998, 41, 3442-3449.
(4) Gao, Y.; Wei, C.-Q.; Burke, T. R., J r. Olefin metathesis in the
design and synthesis of a globally constrained Grb2 SH2 domain
inhibitor. Org. Lett. 2001, 3, 1617-1620.
(5) Wei, C.-Q.; Li, B.; Guo, R.; Yang, D.; Burke, T. R., J r. Develop-
ment of a phosphatase-stable phosphotyrosyl mimetic suitably
protected for the synthesis of high affinity Grb2 SH2 domain-
binding ligands. Bioorg. Med. Chem. Lett. 2002, 12, 2781-2784.
(6) Gao, Y.; Voigt, J .; Wu, J . X.; Yang, D.; Burke, T. R., J r.
Macrocyclization in the design of a conformationally constrained
Grb2 SH2 domain inhibitor. Bioorg. Med. Chem. Lett. 2001, 11,
1889-1892.
(7) Wei, C.-Q.; Gao, Y.; Lee, K.; Guo, R.; Li, B.; Zhang, M.; Yang,
D.; Burke, T. R., J r. Macrocyclization in the design of Grb2 SH2
domain-binding ligands exhibiting high potency in whole cell
systems. J . Med. Chem. 2003, 46, 244-254.
J M030440B