A R T I C L E S
Rivkin et al.
Figure 2. Anticancer drug candidates.
multidrug resistant cells.4 It was this property, as well as more
promising formulatibility, which prompted great interest in
epothilones as anticancer drug candidates.5
Following extensive multidisciplinary research directed to the
biology, chemistry, pharmacology, toxicology, and biosynthesis
of the epothilones, three agents, including one from our program
(vide infra), have already been advanced to phase I and phase
II clinical trials.6
Taking advantage of our then pioneering total syntheses of
epothilones A and B,7 preliminary biological studies with
selected probe structures suggested that the 12,13-oxido linkage
of the macrolactone is a locus of nontumor selective toxicity.8
This perception led us to an extended evaluation of 12,13-
desoxyEpoB (dEpoB, 5) and related desoxy congeners (Figure
2). The desoxy congeners indeed seemed to exhibit less
nontumor directed toxicity9 relative to epothilone B and a far
broader apparent therapeutic index than either EpoB or the
taxoids. The advantages of dEpoB relative to paclitaxel, at the
level of nude mouse xenograft models, is particularly dramatic
with resistant tumors. dEpoB (5) is currently in phase II clinical
trials.
More recently our laboratory reported that incorporation of
E-9,10 unsaturation in the macrolide framework of compound
5 (dEpoB) resulted in a marked increase in potency and in
metabolic stability.10 These properties gave rise to favorable
outcomes in xenograft tumor studies with nude mice. From this
family, 26-trifluoro-(E)-9,10-dehydroepothilone (7) has emerged
as a most promising candidate for drug development.10b Herein
we provide a full account of the novel synthetic chemistry which
led to the discovery of compound 7 and its striking performance
with human cancers in murine models.
Our epothilone program has been directed to two intertwined
goals. The first was the study of the structure-activity relation-
ship of carefully crafted analogues with enhanced biological
properties. The second goal was the exploration of various
strategies to develop a practical total synthesis of drug candi-
dates. Our laboratory does not have access to epothilones of
natural origin. Only through total synthesis could we enter into
a sustainable discovery and development program. Moreover,
we hoped to evaluate structures of either enhanced or diminished
complexity which could not readily be reached from naturally
occurring epothilones. Hence, the total synthesis we practiced
should be adaptable to gaining access to chemical “space” not
accessible from naturally occurring epothilones.
(4) Giannakakou, P.; Sackett, D. L.; Kang, Y.-K.; Zhan, Z.; Buters, J. T.; Fojo,
T.; Poruchynsky, M. S. J. Biol. Chem. 1997, 272, 17118-17125 and
references therein.
(5) (a) Rowinsky, E. K.; Eisenhauer, E. A.; Chaudhry, V.; Arbuck, S. G.;
Donehawer, R. C. Semin. Oncol. 1993, 20, 1-15. (b) Fletcher, B. S.;
Kujubadu, D. A.; Perrin, D. M.; Herschman, H. R. J. Biol. Chem. 1992,
267, 4338-4344. (c) Tsuji, M.; Dubois, R. N. Cell 1995, 83, 493-501.
(d) Essayan, D. M.; Kagey-Sobotka, A.; Colarusso, P. J.; Lichtenstein, L.
M.; Ozols, R. F.; King, E. D. J. Allergy Clin. Immunol. 1996, 97, 42-46.
(6) For reviews of epothilone chemistry and biology, see: (a) Harris, C. R.;
Danishefsky, S. J. J. Org. Chem. 1999, 64, 8434-8456. (b) Nicolaou, K.
C.; Roschangar, F.; Vourloumis, D. Angew. Chem., Int. Ed. 1998, 37, 2014-
2045. (c) Altmann, K.-H. Mini-ReV. Med. Chem. 2003, 3, 149-158. (d)
Nicolaou, K. C.; Ritze´n, V. A.; Namoto, K. Chem. Commun. 2001, 1523-
1535. (e) Harris, C. R.; Kuduk, S. D.; Danishefsky, S. J. Chemistry for the
21st Century 2001, 8. (f) He, L.; Orr, G. A.; Horwitz, S. B. Drug DiscoVery
Today 2001, 6, 1153-1164. (g) Rivkin, A.; Cho, Y. S.; Gabarda, A. E.;
Fumihiko, Y. J. Nat. Prod. 2004, 67, 139-143. (h) Florsheimer, A.;
Altmann, K. H. Expert Opin. Ther. Pat. 2001, 11, 951-968. (i) Wartmann,
M.; Altmann, K.-H. Curr. Med. Chem. 2002, 2, 123-148. (j) Altmann, K.
H.; Wartmann, M.; O’Reilly, V. Biochim. Biophys. Acta 2000, 1470, M79-
M91. (k) Wessjohann, L. A. Curr. Opin. Chem. Biol. 2000, 4, 303-309.
(7) (a) Balog, A.; Meng, D. F.; Kamenecka, T.; Bertinato, P.; Su, D.-S.;
Sorensen, E. J.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1996, 35,
2801-2803. (b) Su, D.-S.; Meng, D. F.; Bertinato, P.; Balog, A.; Sorensen;
E. J.; Danishefsky, S. J.; Zheng, Y. H.; Chou, T.-C.; He, L. F.; Horwitz, S.
B. Angew. Chem., Int. Ed. Engl. 1997, 36, 757-759. (c) Meng, D. F.;
Bertinato, P.; Balog, A.; Su, D.-S.; Kamenecka, T.; Sorensen, E. J.;
Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10073-10092. For initial
reports of other epothilone syntheses, see: (d) Yang, Z.; He, Y.; Vour-
loumis, D.; Vallberg, H.; Nicolaou, K. C. Angew. Chem., Int. Ed. Engl.
1997, 36, 166-168. (e) Nicolaou, K. C.; Sarabia, F.; Ninkovic, S.; Yang,
Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 525-527. (f) Nicolaou, K. C.;
Winssinger, N.; Pastor, J.; Nincovic, S.; Sarabia, F.; He, Y.; Vourloumis,
D.; Yang, Z.; Li, T.; Giannakakou, P.; Hamel, E. Nature 1997, 387, 268-
272. (g) Schinzer, D.; Limberg, A.; Bauer, A.; Bohm, O. M.; Cordes, M.
Angew. Chem., Int. Ed. Engl. 1997, 36, 523-524. (h) May, S. A.; Greico,
P. A. Chem. Commun. 1998, 1597-1598. (i) Sawada, D.; Shibasaki, M.
Angew. Chem., Int. Ed. Engl. 2000, 39, 209-213. (j) Martin, H. J.; Drescher,
M.; Mulzer, J. Angew. Chem., Int. Ed. 2000, 39, 581-583. (k) White, J.
D.; Carter, R. G.; Sundermann, K. F. J. Org. Chem. 1999, 64, 684-685.
(l) Zhu, B.; Panek, J. S. Org. Lett. 2000, 2, 2575-2578, (m) Bode, J. W.;
Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 3611-3612. (n) Fu¨rstner,
A.; Mathes, C.; Grela, K. Chem. Commun. 2001, 12, 1057-1059. (o)
Taylor, R. E.; Chen, Y. Org. Lett. 2001, 3, 2221-2224. (p) Valluri, M.;
Hindupur, R. M.; Bijoy, P.; Labadie, G.; Jung, J. C.; Avery, M. A. Org.
Lett. 2001, 3, 3607-3070. (q) Ermolenko, M. S.; Potier, P. Tetrahedron
Lett. 2002, 43, 2895-2898.
Our particular interest in synthesizing and examining
epothilones with additional nuclear unsaturation, was first
prompted by epothilone 490 (12, (E)-10,11-dehydro-dEpoB).
Epothilone 490, a recently isolated natural product, which
(9) Chou, T.-C.; O’Connor, O. A.; Tong, W. P.; Guan, Y.; Zhang, Z.-G.;
Stachel, S. J.; Lee, C.; Danishefsky, S. J. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 8113-8118. For more information about clinical trials of dEpoB,
(10) (a) Rivkin, A.; Yoshimura, F.; Gabarda, A. E.; Chou, T.-C.; Dong, H.;
Tong, W. P.; Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125, 2899-2901.
(b) Chou, T.-C.; Dong, H.; Rivkin, A.; Yoshimura, F.; Gabarda, A. E.;
Cho, Y. S.; Tong, W. P.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003,
42, 4762-4767. (c) Yoshimura, F.; Rivkin, A.; Gabarda, A. E.; Chou, T.-
C.; Dong, H.; Sukenick, G.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2003, 42, 2518-2521. For recent examples of alternative potent epothilone
analogues, see: (d) Altmann, K. H.; Bold, G.; Caravatti, G.; Flo¨rsheimer,
A.; Guagnano, V.; Wartmann, M. Bioorg. Med. Chem. Lett. 2000, 10,
2765-2768. (e) Nicolaou, K. C.; Scarpelli, R.; Bollbuck, B.; Werschkun,
M. M. A.; Pereira, M.; Wartmann, K.-H.; Altmann, D.; Zaharevitz, R.;
Gussio, P.; Giannakakou, Chem. Biol. 2000, 7, 593-599.
(8) (a) Chou, T.-C.; Zhang, X. G.; Balog, A.; Su, D.; Meng, D. F.; Savin, K.;
Bertino, J. R.; Danishefsky, S. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95,
9642-9647. (b) Chou, T.-C.; Zhang, X. G.; Harris, C. R.; Kuduk, S. D.;
Balog, A.; Savin, K. A.; Bertino, J. R.; Danishefky, S. J. Proc. Natl. Acad.
Sci. U.S.A. 1998, 95, 15798-15802.
9
10914 J. AM. CHEM. SOC. VOL. 126, NO. 35, 2004