10.1002/cmdc.201600553
ChemMedChem
FULL PAPER
[5]
M. S. Butler, M. A. Blaskovich, M. A. Cooper, J Antibiot
(Tokyo) 2013, 66, 571-591.
H. G. Boman, Annu Rev Immunol 1995, 13, 61-92.
K. Midura-Nowaczek, A. Markowska, Perspect Medicin
Chem 2014, 6, 73-80.
a) R. E. Hancock, H. G. Sahl, Nat Biotechnol 2006, 24,
1551-1557; b) P. Kosikowska, A. Lesner, Expert Opin
Ther Pat 2016, 26, 689-702.
Eagle’s minimal essential medium (EMEM) supplemented with 10% (v/v)
fetal bovine serum (FBS) and 1% (v/v) of nonessential amino acid
(NEAA) mixture and 1 mM sodium pyruvate. NIH 3T3 cells were cultured
in DMEM supplemented with 10% (v/v) newborn calf serum (NCS)
(Gibco, Paisly, UK). All culturing media were supplemented with penicillin
(10,000 IU/mL), streptomycin (10 mg/L), and L-glutamine (2 mM). All cell
media and supplements were obtained from Sigma-Aldrich (St. Louis,
MO, USA), except serum (Gibco, Paisly, UK). 96-well plates were from
Corning Costar (Sigma-Aldrich, Brøndby, Denmark).
[6]
[7]
[8]
[9]
A. Peschel, H. G. Sahl, Nat Rev Microbiol 2006, 4, 529-
536.
[10]
a) M. Zasloff, Nature 2002, 415, 389-395; b) J. P. da
Costa, M. Cova, R. Ferreira, R. Vitorino, Appl Microbiol
Biotechnol 2015, 99, 2023-2040.
Cell viability
[11]
[12]
[13]
[14]
a) Y. Shai, Biopolymers 2002, 66, 236-248; b) C. D. Fjell,
J. A. Hiss, R. E. Hancock, G. Schneider, Nat Rev Drug
Discov 2011, 11, 37-51.
F. Guilhelmelli, N. Vilela, P. Albuquerque, S. Derengowski
Lda, I. Silva-Pereira, C. M. Kyaw, Front Microbiol 2013, 4,
353.
a) S. Rotem, A. Mor, Biochim Biophys Acta 2009, 1788,
1582-1592; b) A. K. Marr, W. J. Gooderham, R. E.
Hancock, Curr Opin Pharmacol 2006, 6, 468-472.
N. P. Chongsiriwatana, J. A. Patch, A. M. Czyzewski, M. T.
Dohm, A. Ivankin, D. Gidalevitz, R. N. Zuckermann, A. E.
Barron, Proc Natl Acad Sci U S A 2008, 105, 2794-2799.
S. W. Shuey, W. J. Delaney, M. C. Shah, M. A. Scialdone,
Bioorg Med Chem Lett 2006, 16, 1245-1248.
D. Liu, W. F. DeGrado, J Am Chem Soc 2001, 123, 7553-
7559.
Cell viability assessment was performed on cell monolayers grown to
∼90% confluence in 96-well plates by using the MTS/PMS assay as
previously described[40]. Briefly, the adhered cells were washed with
37 °C Hanks’ balanced salt solution (HBSS from Sigma-Aldrich, St. Louis,
MO, USA) containing 10 mM HEPES (AppliChem, Darmstadt, Germany),
pH 7.4, and exposed at 37°C to 100 μL of peptidomimetic dissolved in
the medium used for culturing of each cell line (at concentrations in the
range 0−1000 μM) for 1 h. After exposure the cells were washed twice
with 37 °C HBSS containing 10 mM HEPES (pH 7.4), and then 100 μL of
an MTS/PMS solution, consisting of 240 μg/mL MTS (Promega, Madison,
WI, USA) and 2.4 μg/mL PMS (Sigma Aldrich, Buchs, Switzerland) in
HBSS, were added to the cells, which then were incubated for 1 h at
37 °C with horizontal shaking (50 rpm) protected from light. A POLARstar
OPTIMA plate reader (BMG Labtech, Offenburg, Germany) was used to
measure the absorbance at 492 nm. The relative viability was calculated
by using 0.2% (w/v) sodium dodecyl sulfate (SDS) as a positive control,
while cells exposed to medium without test compound were used as a
negative control. Data were obtained in two independent biological
replicates performed on separate passages of cells and on separate
days with a total number of six replicates.
[15]
[16]
[17]
[18]
[19]
M. A. Schmitt, B. Weisblum, S. H. Gellman, J Am Chem
Soc 2007, 129, 417-428.
Y. Niu, H. Wu, Y. Li, Y. Hu, S. Padhee, Q. Li, C. Cao, J.
Cai, Org Biomol Chem 2013, 11, 4283-4290.
a) C. A. Olsen, H. L. Ziegler, H. M. Nielsen, N. Frimodt-
Moller, J. W. Jaroszewski, H. Franzyk, Chembiochem
2010, 11, 1356-1360; b) R. D. Jahnsen, N. Frimodt-Moller,
H. Franzyk, J Med Chem 2012, 55, 7253-7261.
L. Hein-Kristensen, K. M. Knapp, H. Franzyk, L. Gram,
BMC Microbiol 2011, 11, 144.
Y. Liu, K. M. Knapp, L. Yang, S. Molin, H. Franzyk, A.
Folkesson, Int J Antimicrob Agents 2013, 41, 20-27.
S. L. Skovbakke, C. J. Larsen, P. M. Heegaard, L. Moesby,
H. Franzyk, J Med Chem 2015, 58, 801-813.
L. Citterio, H. Franzyk, Y. Palarasah, T. E. Andersen, R. V.
Mateiu, L. Gram, Res Microbiol 2016, 167, 72-82.
a) Y. Rosenfeld, N. Lev, Y. Shai, Biochemistry 2010, 49,
853-861; b) R. O. Jahnsen, A. Sandberg-Schaal, N.
Frimodt-Moller, H. M. Nielsen, H. Franzyk, Eur J Pharm
Biopharm 2015, 95, 40-46; c) L. M. Yin, M. A. Edwards, J.
Li, C. M. Yip, C. M. Deber, J Biol Chem 2012, 287, 7738-
7745.
a) M. Wenzel, P. Schriek, P. Prochnow, H. B. Albada, N.
Metzler-Nolte, J. E. Bandow, Biochim Biophys Acta 2016,
1858, 1004-1011; b) Y. Hu, M. N. Amin, S. Padhee, R. E.
Wang, Q. Qiao, G. Bai, Y. Li, A. Mathew, C. Cao, J. Cai,
ACS Med Chem Lett 2012, 3, 683-686.
B. E. Haug, W. Stensen, T. Stiberg, J. S. Svendsen, J
Med Chem 2004, 47, 4159-4162.
H. Meng, K. Kumar, J Am Chem Soc 2007, 129, 15615-
15622.
[20]
[21]
[22]
[23]
[24]
Acknowledgements
We would like to thank Karina J. Vissing, Birgitte Simonsen,
Anna Mette Hansen and Teresa Piros Dos Santos for practical
help and Maria Pedersen for cell culturing. We thank Drug
Research Academy for partial funding of the POLARstar
equipment. Natalia Molchanova was supported by a PhD grant
from UC-CARE (University of Copenhagen Centre for Control of
Antimicrobial Research) financed by University of Copenhagen.
Keywords: Antimicrobial, peptidomimetics, structure-activity
[25]
relationships, fluorination, hydrophobicity
References:
[26]
[27]
[28]
[1]
[2]
M. Bassetti, M. Merelli, C. Temperoni, A. Astilean, Ann
Clin Microbiol Antimicrob 2013, 12, 22.
a) Y. Y. Liu, Y. Wang, T. R. Walsh, L. X. Yi, R. Zhang, J.
Spencer, Y. Doi, G. Tian, B. Dong, X. Huang, L. F. Yu, D.
Gu, H. Ren, X. Chen, L. Lv, D. He, H. Zhou, Z. Liang, J. H.
Liu, J. Shen, Lancet Infect Dis 2016, 16, 161-168; b) H.
Hasman, A. M. Hammerum, F. Hansen, R. S. Hendriksen,
B. Olesen, Y. Agerso, E. Zankari, P. Leekitcharoenphon,
M. Stegger, R. S. Kaas, L. M. Cavaco, D. S. Hansen, F. M.
Aarestrup, R. L. Skov, Euro Surveill 2015, 20; c) W. H. O.
Antimicrobial resistance Global Report on Surveillance,
2014.
L. M. Gottler, R. de la Salud Bea, C. E. Shelburne, A.
Ramamoorthy, E. N. Marsh, Biochemistry 2008, 47, 9243-
9250.
[29]
a) M. D. Diaz, M. Palomino-Schatzlein, F. Corzana, C.
Andreu, R. J. Carbajo, M. del Olmo, A. Canales-
Mayordomo, A. Pineda-Lucena, G. Asensio, J. Jimenez-
Barbero, Chembiochem 2010, 11, 2424-2432; b) L. M.
Gottler, H. Y. Lee, C. E. Shelburne, A. Ramamoorthy, E. N.
Marsh, Chembiochem 2008, 9, 370-373; c) E. N. Marsh, B.
C. Buer, A. Ramamoorthy, Mol Biosyst 2009, 5, 1143-
1147.
D. Gimenez, C. Andreu, M. del Olmo, T. Varea, D. Diaz, G.
Asensio, Bioorg Med Chem 2006, 14, 6971-6978.
B. Findlay, G. G. Zhanel, F. Schweizer, Int J Antimicrob
Agents 2012, 40, 36-42.
[3]
[4]
H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Edwards,
D. Gilbert, L. B. Rice, M. Scheld, B. Spellberg, J. Bartlett,
Clin Infect Dis 2009, 48, 1-12.
S. Vasoo, J. N. Barreto, P. K. Tosh, Mayo Clin Proc 2015,
90, 395-403.
[30]
[31]
7
This article is protected by copyright. All rights reserved.