J. R. Falck et al. / Tetrahedron Letters 43 (2002) 963–966
965
References
1. Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 3rd Ed.; John Wiley & Sons: New
York, 1999; Chapter 2.
2. Zeigler, T. Carbohydr. Chem. 1998, 21–45.
3. For examples of differential cleavage of benzyl ethers,
see: (a) Madsen, J.; Viuf, C.; Bols, M. Chem. Eur. J.
2000, 6, 1140–1146; (b) Hori, H.; Nishida, Y.; Ohrui, H.;
Meguro, H. J. Org. Chem. 1989, 54, 1346–1353; (c)
Kartha, K. P. R.; Kiso, M.; Hasegawa, A.; Jennings, H.
J. J. Carbohydr. Chem. 1998, 17, 811–817; (d) Klemer, A.;
Beiber, M.; Wilbers, H. Justus Leibigs Ann. Chem. 1983,
1416–1421; (e) BeMiller, J. N.; Muenchow, H. L. Carbo-
hydr. Res. 1973, 28, 253–262; (f) Angibeaud, P.; Defaye,
J.; Gadelle, A.; Utille, J. P. Synthesis 1985, 1123–1125; (g)
Bieg, T.; Szeja, W. Carbohydr. Res. 1990, 205, C10–C11.
4. Recent examples include methoxy-substituted benzyl
ethers: Yu, W.; Su, M.; Gao, X.; Yang, Z.; Jin, Z.
Tetrahedron Lett. 2000, 41, 4015–4017. Halobenzyl
ethers: Plante, O. J.; Buchwald, S. L.; Seeberger, P. H. J.
Am. Chem. Soc. 2000, 122, 7148–7149. a,a-Dimethylfluo-
robenzyl ethers: Cho, H.-S.; Yu, J.; Falck, J. R. J. Am.
Chem. Soc. 1994, 116, 8354–8355.
Figure 1. Chromium complex with 1.
Application of the standard deprotection conditions to
methyl 2,3,4,5-tetra-O-benzyl-a-D
-mannopyranoside13
(16) afforded 1714 exclusively (entry 8). On the other
hand, methyl glucopyranosides are not able to adopt a
stable three-point complex without energetically unfa-
vorable conformational changes and, consequently,
showed only modest regioselectivity: a-anomer 1815 fur-
nished alcohols 1916/2017 in a 60:40 ratio (entry 9) and
b-anomer 2115 yielded 22/2318 as a 70:30 mixture (entry
10).
5. Falck, J. R.; Barma, D. K.; Baati, R.; Mioskowski, C.
Angew. Chem., Int. Ed. Engl. 2001, 40, 1281–1283.
6. Ding, X.; Kong, F. Carbohydr. Res. 1996, 286, 161–166.
Acyclic monosaccharides, with their greater conforma-
tional mobility, were generally quite reactive and
undergo multiple rounds of ether cleavage. The evolu-
1
7. Spectral data for 3: H NMR (CDCl3, 300 MHz) l 1.29
tion of 1,2,6-tri-O-benzyl-
-mannitol (25),3b a HIV
D
(s, 3H), 1.49 (s, 3H), 1.91 (s, 3H), 3.68 (dd, 1H, J=5.4,
10.2 Hz), 3.84–3.96 (m, 2H), 4.36 (dd, 1H, J=3.0, 9.0
Hz), 4.47 (dd, 2H, J=3.9, 7.8 Hz), 4.60 (s, 2H), 4.78 (d,
1H, J=11.4 Hz), 5.31 (d, 1H, J=2.7 Hz), 5.86 (d, 1H,
J=3.6 Hz), 7.20–7.40 (m, 10H). 13C NMR (CDCl3, 75
MHz) l 20.91, 26.40, 26.74, 71.04, 72.62, 73.61, 74.98,
76.22, 77.62, 83.17, 104.91, 112.33, 127.69, 127.76, 127.86,
128.04, 128.48, 128.54, 138.21, 138.45, 169.73. 4: 1H
NMR (CDCl3, 400 MHz) l 1.31 (s, 3H), 1.51 (s, 3H),
2.10 (s, 3H), 2.69 (d, 1H, J=5.2 Hz), 3.61 (dd, 1H,
J=6.4, 9.6 Hz), 3.77 (dd, 1H, J=2.4, 9.6 Hz), 3.82–3.94
(m, 1H), 4.23 (dd, 1H, J=2.4, 8.8 Hz), 4.53 (d, 1H,
J=3.6 Hz), 4.55–4.63 (m, 2H), 5.32 (d, 1H, J=2.8 Hz),
aspartyl protease inhibitor,19 directly from 24 (entry 11)
is typical.
General procedure: A mixture of CrCl2 (0.8 mmol;
Strem Chem.) or CrCl3 (1.6 mmol) and LiI (2 mmol;
Aldrich Chem.) in ethyl acetate (8 mL) was heated
under argon at 70°C until a brown, homogeneous
solution was obtained (ꢀ0.5 h). The carbohydrate (0.2
mmol) in moist ethyl acetate (EtOAc:H2O=1:0.005, 1
mL) was added to the mixture at room temperature,
then heated at 55–75°C for 8–14 h. The reaction was
cooled to rt, quenched with water, and extracted with
EtOAc. The combined organic extracts were washed
with saturated aq. sodium sulfite, water, brine, dried
(Na2SO4) and concentrated in vacuo. Purification of the
residue by silica gel chromatography afforded the
respective products.
1
5.89 (d, 1H, J=4.0 Hz), 7.20–7.40 (m, 5H). 7: H NMR
(CDCl3, 400 MHz) l 1.36 (s, 3H), 1.52 (s, 3H), 3.78 (s,
6H), 3.62–3.71 (m, 1H), 4.03–4.07 (m, 1H), 4.18 (d, 1H,
J=2.8 Hz), 4.24 (dd, 1H, J=2.8, 9.2 Hz), 4.57–4.62 (m,
3H), 4.72–4.80 (m, 4H), 5.89 (d, 1H, J=3.6 Hz), 6.52 (d,
2H, J=8.0 Hz), 7.22–7.35 (m, 11H). 9: 1H NMR (CDCl3,
300 MHz) l 1.30 (s, 3H), 1.46 (s, 3H), 3.68–3.73 (m, 2H),
3.77 (s, 6H), 3.80 (s, 6H), 4.04 (dd, 1H, J=3.3 Hz),
4.34–4.39 (m, 1H), 4.59–4.61 (m, 1H), 4.65–4.71 (m, 4H),
5.87 (d, 1H, J=3.9 Hz), 6.53 (dd, 4H, J=1.8, 8.1 Hz),
7.19–7.26 (m, 2H). 10: 1H NMR (CDCl3, 400 MHz) l
1.35 (s, 3H), 1.49 (s, 3H), 2.90 (t, 1H, J=6.8 Hz),
3.78–3.81 (m, 2H), 3.84 (s, 6H), 4.05 (d, 1H, J=3.6 Hz),
4.27–4.29 (m, 1H), 4.59 (d, 1H, J=10 Hz), 4.71 (d, 1H,
J=4.0 Hz), 4.84 (d, 1H, J=10.4 Hz), 5.97 (d, 1H, J=4.0
Hz), 6.57 (d, 2H, J=8.4 Hz), 7.25–7.29 (m, 1H).
8. Koell, P.; Lendering, U. J. Carbohydr. Chem. 1987, 6,
281–293.
In summary, we describe an efficient, operationally
simple protocol for the regioselective cleavage of benzyl
ethers using CrCl2/LiI under conditions suitable for
polyfunctional or labile molecules. Optimal regioselec-
tivity required three-point coordination between the
carbohydrate and Cr.
Acknowledgements
9. Stepowska, H.; Zamojski, A. Tetrahedron 1999, 55, 5519–
5538.
10. Billington, D. C.; Baker, R.; Kulagowski, J. J.; Mawer, I.
M.; Vacca, J. P.; Jane deSolms, S.; Huff, J. R. J. Chem.
Soc., Perkin Trans. 1 1989, 1423–1429.
Financial support provided by the Robert A. Welch
Foundation, NIH (GM 31278, DK 38226) and an
unrestricted grant from Taisho Pharmaceutical Co.,
Ltd. Dr. E. R. Fogel is thanked for helpful discussions.