Angewandte
Chemie
[4] “Allylboron Reagents”: W. R. Roush in Houben-Weyl,
Vol. E21b (Eds.: G. Helmchen, R. W. Hoffmann, J. Mulzer, E.
Schaumann), Thieme, Stuttgart, 1995, p. 1410; W. R. Roush, S.
Chemler in Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-
VCH, Weinheim, 2000, p. 403.
[5] D. Hoppe, T. Hense, Angew. Chem. 1997, 109, 2376; Angew.
Chem. Int. Ed. Engl. 1997, 36, 2282.
[6] a) D. Seebach, B. Weidmann, L. Widler, Mod. Synth. Methods
1983, 3, 217; b) M. T. Reetz, Organotitanium Reagents in
Organic Synthesis, Springer, Berlin, 1986; c) “Allyltitanium and
Allylzirconium Reagents”: D. Hoppe in Houben-Weyl,
Vol. E21b (Eds.: G. Helmchen, R. W. Hoffmann, J. Mulzer, E.
Schaumann), Thieme, Stuttgart, 1995, p. 1551.
[7] For stereoselective dihydroxylations of silylated 1,4-cyclohexa-
dienes see: R. Angelaud, O. Babot, T. Charvat, Y. Landais, J.
Org. Chem. 1999, 64, 9613.
Scheme 2. Synthesis of nephrosteranic acid: a) OsO4 (2%), NMO
(3.5 equiv), acetone/H2O (4:1); b) NaIO4 (3 equiv), THF/H2O (1:1);
c) CrO3/H2SO4, acetone; d) NaHMDS, MeI, THF. HMDS=hexamethyl-
disilazane, NMO=N-methylmorpholine N-oxide.
[8] Silylated cyclohexadienes have been used successfully as tin
hydride substituents in radical chemistry: A. Studer, S. Amrein,
Angew. Chem. 2000, 112, 3196; Angew. Chem. Int. Ed. 2000, 39,
3080; A. Studer, S. Amrein, F. Schleth, T. Schulte, J. C. Walton, J.
Am. Chem. Soc. 2003, 125, 5726.
[9] Ti compound 3 was readily prepared from 1,4-cyclohexadiene by
lithiation (sBuLi, TMEDA, THF, À788) followed by transmeta-
lation with Ti(OiPr)4.
Crude 8 was oxidized under Jones conditions to g-butyrolac-
tone 9 (19% yield over three steps). Methylation according to
a literature procedure[13d] afforded scalemic nephrosteranic
acid (60%, [a]2D5 = + 22.7 (c = 0.78 in CHCl3); lit.[13a] [a]2D5
+ 27.2 (c = 1.45 in CHCl3)).
=
[10] The major isomer of 4a was unambiguously assigned as the syn
isomer based on X-ray structure analysis. All the other
compounds were assigned in analogy. CCDC-213624 contains
the supplementary crystallographic data for this paper. These
conts/retrieving.html (or from the Cambridge Crystallographic
Data Centre, 12, Union Road, Cambridge CB21EZ, UK;
fax: (+ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
[11] For an excellent review on the use of TADDOLs in asymmetric
synthesis see: D. Seebach, A. K. Beck, A. Heckel, Angew. Chem.
Int. Ed. 2001, 113, 96; Angew. Chem. Int. Ed. 2001, 40, 92.
[12] A. Hafner, R. O. Duthaler, R. Marti, G. Rihs, P. Rothe-Streit, F.
Schwarzenbach, J. Am. Chem. Soc. 1992, 114, 2321.
[13] For recent syntheses of nephrosteranic acid see: a) H. Takahata,
Y. Uchida, T. Momose, J. Org. Chem. 1995, 60, 5628; b) P. A.
Jacobi, P. Herradura, Can. J. Chem. 2001, 79, 1727; c) M. P. Sibi,
P. Liu, J. Ji, S. Hajra, J.-x. Chen, J. Org. Chem. 2002, 67, 1738;
d) R. B. Chhor, B. Nosse, S. Sꢀrgel, C. Bꢀhm, M. Seitz, O. Reiser,
Chem. Eur. J. 2003, 9, 260.
In conclusion, the easily prepared chiral cyclohexadienyl-
titanate 7 reacts with aldehydes in highly diastereo- and
enantioselective allylations. The resulting functionalized 1,3-
cyclohexadienes are highly useful building blocks for the
preparation of biologically important g-butyrolactones, as
documented by a short efficient synthesis of nephrosteranic
acid.
Received: June 30, 2003
Revised: September 22, 2003 [Z52254]
Keywords: asymmetric synthesis · natural products · synthetic
.
methods · TADDOLs · titanium · total synthesis
[1] Houben-Weyl, Vol. E21b (Eds.: G. Helmchen, R. W. Hoffmann,
J. Mulzer, E. Schaumann), Thieme, Stuttgart, 1995, pp. 1357 –
1602; Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93, 2207.
[2] I. Fleming, A. Barbero, D. Walter, Chem. Rev. 1997, 97, 2063;
“Allylsilanes”: E. J. Thomas in Houben-Weyl, Vol. E21b (Eds.:
G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann),
Thieme, Stuttgart, 1995, p. 1491.
[14] The regioisomeric 1,4-diene was formed as a side product and
could not be separated (4o/5o 87:13). Unfortunately, we were
not able to determine the enantiomer ratio of the major product
4o. However, the same reaction with hexanal afforded the major
isomer with an enantiomer ratio of 93:7, as determined by GC
analysis. We assume that the reaction with dodecanal proceeds
with similar selectivity.
[3] “Allylstannanes”: E. J. Thomas in Houben-Weyl, Vol. E21bG
(Eds.: G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schau-
mann), Thieme, Stuttgart, 1995, p. 1508; selected examples: M.
Kurosu, M. Lorca, Tetrahedron Lett. 2002, 43, 1765, and
references therein; C.-M. Yu, J.-Y. Lee, B. So, J. Hong, Angew.
Chem. 2002, 114, 169; Angew. Chem. Int. Ed. 2002, 41, 161, and
references therein.
[15] V. VanRheenen, R. C. Kelly, D. Y. Cha, Tetrahedron Lett. 1976,
1973.
Angew. Chem. Int. Ed. 2004, 43, 313 –315
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
315