Analytical Chemistry
Selective fluorescent imaging of superoxide in vivo using
Page 6 of 8
mouse kidney using selective superoxide anion fluorescent
probes. Chem. Sci. 2018, 9, 7606-7613.
1
2
3
4
ethidium-based probes. Proc. Natl. Acad. Sci. USA. 2006,
103, 15038-15043.
(43) Hong, S. C.; Murale, D. P.; Jang, S.-Y.; Haque, M. M.;
Seo, M.; Lee, S.; Woo, D. H.; Kwon, J.; Song, C.-S.; Kim,
Y. K.; Lee, J. S., Discrimination of avian influenza virus
subtypes using host ‐ cell infection fingerprinting by a
sulfinate-based fluorescence fuperoxide probe. Angew.
Chem. Int. Ed. 2018, 57, 9716-9721
(29) Kundu, K.; Knight, S. F.; Willett, N.; Lee, S.; Taylor, W.
R.; Murthy, N., Hydrocyanines: a class of fluorescent
sensors that can image reactive oxygen species in cell
culture, tissue, and in vivo. Angew. Chem. Int. Ed. 2009,
48, 299-303.
5
6
7
8
9
(44) Hu, J. J.; Wong N.-K.; Ye, S.; Chen, X.; Lu, M.-Y.; Zhao,
A. Q.; Guo, Y.; Ma, A. C.-H.; Leung, A. Y.-H.; Shen, J.;
Yang, D., Fluorescent probe HKSOX-1 for imaging and
detection of endogenous superoxide in live cells and in
vivo. J. Am. Chem. Soc. 2015, 137, 6837-6843.
(30) Manjare, S. T.; Kim, S.; Heo, W. D.; Churchill, D. G.,
Hydrocyanines: a class of fluorescent sensors that can
image reactive oxygen species in cell culture, tissue, and in
vivo. Org. Lett. 2014, 16, 410−412.
(31) Singh, A. P.; Murale, D. P.; Ha, Y.; Liew, H.; Lee, K. M.;
Segev, A.; Suh, Y.-H.; Churchill, D. G., A novel, selective,
and extremely responsive thienyl-based dual fluorogenic
probe for tandem superoxide and Hg2+ chemosensing.
Dalton Trans. 2013, 42, 3285-3290.
(32) Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.;
Tang, B., Mitochondria-targeted reaction-based two-
photon fluorescent probe for imaging of superoxide anion
in live cells and in vivo. Anal. Chem. 2013, 85, 9877−9881.
(33) Maeda, H.; Yamamoto, K.; Nomura, Y.; Kohno, I.; Hafsi,
L.; Ueda, N.; Yoshida, S.; Fukuda, M.; Fukuyasu, Y.;
Yamauchi, Y.; Itoh, N., A design of fluorescent probes for
superoxide based on a nonredox mechanism. J. Am. Chem.
Soc. 2005, 127, 68-69.
(34) Maeda, H.; Yamamoto, K.; Kohno, I.; Hafsi, L.; Itoh, N.;
Nakagawa, S.; Kanagawa, N.; Suzuki, K.; Uno, T., Design
of a practical fluorescent probe for superoxide based on
protection–deprotection chemistry of fluoresceins with
benzenesulfonyl protecting groups. Chem. Eur. J. 2007, 13,
1946-1954.
(35) Murale, D. P.; Kim, H.; Choi, W. S.; Churchill, D. G.,
Highly fluorescent and specific molecular probing of
(homo) cysteine or superoxide: biothiol detection
confirmed in living neuronal cells. Org. Lett. 2013, 15,
3630-3633.
(36) Jang, Y. J.; Murale, D. P.; Churchill, D. G., Novel
reversible and selective nerve agent simulant detection in
conjunction with superoxide “turn-on” probing. Analyst
2014, 139, 1614-1617.
(37) Lu, D.; Zhou, L.; Wang, R.; Zhang, X.-B.; He, L.; Zhang,
J.; Hu, X.; Tan, W., A two-photon fluorescent probe for
endogenous superoxide anion radical detection and
imaging in living cells and tissues. Sensor. Actuat. B.-
Chem. 2017, 250, 259-266.
(38) Lu, X.; Chen, Z.; Dong, X.; Zhao, W., Water-soluble
fluorescent probe with dual mitochondria/lysosome
targetability for selective superoxide detection in live cells
and in zebrafish embryos. ACS Sens. 2018, 3, 59-64.
(39) Ma, H.; Yang, M.; Zhang, S.; Yin, P.; Wang, T.; Yang,
Y.; Lei, Z.; Ma, Y.; Qin, Y.; Yang, Z. Two aggregation-
induced emission (AIE)-active reaction-type probes: for
real-time detecting and imaging of superoxide anions.
Analyst 2019, 144, 536–542.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(45) Si, F.; Liu, Y.; Yan, K.; Zhong, W., A mitochondrion
targeting fluorescent probe for imaging of intracellular
superoxide radicals. Chem. Commun. 2015, 51, 7931-7934.
(46) Gao, X.; Feng, G.; Manghnani, P. N.; Hu, F.; Jiang, N.;
Liu, J.; Liu, B.; Sun, J. Z.; Tang, B. Z., A two-channel
responsive fluorescent probe with AIE characteristics and
its application for selective imaging of superoxide anions
in living cells. Chem. Commun. 2017, 53, 1653-1656.
(47) Gao, M.; Zhang, X.; Wang, Y.; Liu, Q.; Yu, F.; Huang, Y.;
Ding, C.; Chen, L. Sequential detection of superoxide
anion and hydrogen polysulfides under hypoxic stress via a
spectral-response-separated fluorescent probe functioned
with a nitrobenzene derivative. Anal. Chem. 2019, 91,
7774-7781.
(48) Wang, Y.; Gao, M.; Chen, Q.; Yu, F.; Jiang, G.; Chen, L.,
Associated detection of superoxide anion and mercury (II)
under chronic mercury exposure in cells and mice models
via a three-channel fluorescent probe. Anal. Chem. 2018,
90, 9769-9778.
(49) Huang, Y.; Yu, F.; Wang, J.; Chen, L., Near-infrared
fluorescence probe for in situ detection of superoxide anion
and hydrogen polysulfides in mitochondrial oxidative
stress. Anal. Chem. 2016, 88, 4122-4129.
(50) Xu, K.; Liu, X.; Tang, B., A phosphinate-based red
fluorescent probe for imaging the superoxide radical anion
generated by RAW264. 7 macrophages. ChemBioChem.
2007, 8, 453-458.
(51) Xu, K.; Liu, X.; Tang, B.; Yang, G.; Yang, Y.; An, L.,
Design of a phosphinat-based fluorescent probe for
superoxide detection in mouse peritoneal macrophage.
Chem. Eur. J. 2007, 13, 1411-1416.
(52) P. Murale, D.; Kim, H.; Choi, W. S.; Churchill, D. G.,
Highly selective excited state intramolecular proton
transfer (ESIPT)-based superoxide probing. Org. Lett.
2013, 15, 3946-3949.
(53) Zhang, J.; Li, C.; Zhang, R.; Zhang, F.; Liu, W.; Liu, X.;
Lee, S. M.-Y.; Zhang, X., A phosphinate-based near-
infrared fluorescence probe for imaging the superoxide
radical anion in vitro and in vivo. Chem. Commun. 2016,
52, 2679-2682.
(54) Wang, J.; Liu, L.; Xu, W.; Yang, Z.; Yan, Y.; Xie, X.;
Wang, Y.; Yi, T.; Wang, C.; Hua, T., Mitochondria-
targeted ratiometric fluorescent probe based on
diketopyrrolopyrrole for detecting and imaging of
endogenous superoxide anion in vitro and in vivo. Anal.
Chem. 2019, 91, 5786−5793.
(55) Zhang, Z.; Fan, J.; Zhao, Y.; Kang, Y.; Du, J.; Peng, X.,
Mitochondria-accessing ratiometric fluorescent probe for
imaging endogenous superoxide anion in live cells and
daphnia magna. ACS Sens. 2018, 3, 735−741.
(40) Han, X.; Wang, R.; Song, X.; Yu, F.; Lv, C.; Chen, L. A
mitochondrial-targeting near-infrared fluorescent probe for
bioimaging and evaluating endogenous superoxide anion
changes during ischemia/reperfusion injury. Biomaterials
2018, 156, 134-146.
(41) Yu, Z. H.; Chung, C. Y.-S.; Tang, F. K.; Brewerb, T. F.;
Au-Yeung, H. Y. A modular trigger for the development of
selective superoxide probes. Chem. Commun. 2017, 53,
10042-10045.
(56) Yang, J.; Liu, X.; Wang, H.; Tan, H.; Xie, X.; Zhang, X.;
Liu, C.; Qu, X.; Hua, J., A turn-on near-infrared
fluorescence probe with aggregation-induced emission
based on dibenzo[a,c]phenazine for detection of superoxide
(42) Lv, Y.; Cheng, D.; Su, D.; Chen, M.; Yin, B.-C.; Yuan,
L.; Zhang, X. -B. Visualization of oxidative injury in the
ACS Paragon Plus Environment