33 S. K. Banerjee and J. A. Rupley, Temperature and pH dependence of the
binding of oligosaccharides to lysozyme, J. Biol. Chem., 1973, 248,
2117–2124.
54 C. Hamark, J. Landström, L. Eriksson and G. Widmalm, Ethyl 3,6-di-O-
benzyl-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside, Acta Crystal-
logr., Sect. E: Struct. Rep. Online, 2010, 66, o3250–o3251.
34 F. W. Dahlquist and M. A. Raftery, A nuclear magnetic resonance
study of association equilibria and enzyme-bound environments of N-
acetyl-D-glucosamine anomers and lysozyme, Biochemistry, 1968, 7,
3269–3277.
35 B. D. Sykes and C. Parravano, A nuclear magnetic resonance study of the
inhibition of lysozyme by N-acetyl-D-glucosamine and di-N-acetyl-D-glu-
cosamine, J. Biol. Chem., 1969, 244, 3900–3904.
55 C. Hamark, J. Landström, L. Eriksson and G. Widmalm, Ethyl 4,6-O-
benzylidene-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside,
Crystallogr., Sect. E: Struct. Rep. Online, 2010, 66, o3249.
Acta
56 M. S. Sujatha, Y. U. Sasidhar and P. V. Balaji, Insights into the role of the
aromatic residue in galactose-binding sites: MP2/6–311G++** study on
galactose- and glucose-aromatic residue analogue complexes, Biochemis-
try, 2005, 44, 8554–8562.
36 C. Bjurulf and I. Wadsö, Thermochemistry of lysozyme-inhibitor
binding, Eur. J. Biochem., 1972, 31, 95–102.
37 Y. He, M. S. Macauley, K. A. Stubbs, D. J. Vocadlo and G. J. Davies,
Visualizing the reaction coordinate of an O-GlcNAc hydrolase, J. Am.
Chem. Soc., 2010, 132, 1807–1809.
57 R. Sharma, J. P. McNamara, R. K. Raju, M. A. Vincent, I. H. Hillier and
C. A. Morgado, The interaction of carbohydrates and amino acids with
aromatic systems studied by density functional and semi-empirical mol-
ecular orbital calculations with dispersion corrections, Phys. Chem.
Chem. Phys., 2008, 10, 2767–2774.
38 A. L. Bowman, I. M. Grant and A. J. Mulholland, QM/MM simulations
predict a covalent intermediate in the hen egg white lysozyme reaction
with its natural substrate, Chem. Commun., 2008, 4425–4427.
39 L. Fielding, NMR methods for the determination of protein–ligand dis-
sociation constants, Prog. Nucl. Magn. Reson. Spectrosc., 2007, 51, 219–
242.
58 S. Tsuzuki and A. Fujii, Nature and physical origin of CH/π-interaction:
significant difference from convetional hydrogen bonds, Phys. Chem.
Chem. Phys., 2008, 10, 2584–2594.
59 S. Tsuzuki, T. Uchimaru and M. Mikami, Magnitude and nature of carbo-
hydrate–aromatic interactions: ab initio calculations of fucose–benzene
complex, J. Phys. Chem. B, 2009, 113, 5617–5621.
40 M. Mayer and B. Meyer, Characterization of ligand binding by saturation
transfer difference NMR spectroscopy, Angew. Chem., Int. Ed., 1999, 38,
1784–1788.
41 M. Muraki and K. Harata, X-Ray structural analysis of the ligand-recog-
nition mechanism in the dual-affinity labeling of c-type lysozyme with
2′,3′-epoxypropyl β-glycoside of N-acetyllactosamine, J. Mol. Recognit.,
2003, 16, 72–82.
42 G. Widmalm, General NMR spectroscopy of carbohydrates and confor-
mational analysis in solution, in Comprehensive Glycoscience, ed. J.
P. Kamerling, Elsevier, Oxford, 1st edn, 2007, pp. 101–132.
43 M. Aida, Y. Sugawara, S. Oikawa and K. Umemoto, Structural fluctuation
of methyl N,N′-diacetyl-β-D-chitobioside in vacuo and in aqueous sol-
ution: molecular dynamics simulations and proton NMR spectroscopy,
Int. J. Biol. Macromol., 1995, 17, 227–235.
44 G. M. Clore and A. M. Gronenborn, Theory and applications of the trans-
ferred nuclear Overhauser effect to the study of the conformations of
small ligands bound to proteins, J. Magn. Reson., 1982, 48, 402–417.
45 C. B. Post, Exchange-transferred NOE spectroscopy and bound ligand
structure determination, Curr. Opin. Struct. Biol., 2003, 13, 581–588.
46 T. Scherf and J. Anglister, A T1ρ-filtered two-dimensional transferred
NOE spectrum for studying antibody interactions with peptide antigens,
Biophys. J., 1993, 64, 754–761.
47 G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R.
K. Belew and A. J. Olson, Automated docking using a Lamarckian
genetic algorithm and an empirical binding free energy function, J.
Comput. Chem., 1998, 19, 1639–1662.
48 J. Landström, E.-L. Nordmark, R. Eklund, A. Weintraub, R. Seckler and
G. Widmalm, Interaction of a Salmonella enteritidis O-antigen octasac-
charide with the phage P22 tailspike protein by NMR spectroscopy and
docking studies, Glycoconjugate J., 2008, 25, 137–143.
49 V. Spiwok, P. Lipovová, T. Skálová, E. Buchtelová, J. Hašek and
B. Králova, Role of CH/π interactions in substrate binding by Escherichia
coli β-galactosidase, Carbohydr. Res., 2004, 339, 2275–2280.
50 M. del Carmen Fernández-Alonso, F. J. Cañada, J. Jiménez-Barbero and
G. Cuevas, Molecular recognition of saccharides by proteins. Insights on
the origin of carbohydrate–aromatic interactions, J. Am. Chem. Soc.,
2005, 127, 7379–7386.
51 V. Spiwok, P. Lipovová, T. Skálová, E. Vondráčková, J. Dohnálek,
J. Hašek and B. Králova, Modelling of carbohydrate–aromatic inter-
actions: ab initio energetics and force field performance, J. Comput.-
Aided Mol. Des., 2006, 19, 887–901.
60 A. D. Mackerell Jr., M. Feig and C. L. Brooks III, Extending the treat-
ment of backbone energetics in protein force fields: limitations of gas-
phase quantum mechanics in reproducing protein conformational distri-
butions in molecular dynamics simulations, J. Comput. Chem., 2004, 25,
1400–1415.
61 R. Eklund and G. Widmalm, Molecular dynamics simulations of an
oligosaccharide using a force field modified for carbohydrates, Carbo-
hydr. Res., 2003, 338, 393–398.
62 C. Rademacher, J. Landström, N. Sindhuwinata, M. M. Palcic,
G. Widmalm and T. Peters, NMR-based exploration of the acceptor
binding site of human blood Group B galactosyltransferase with molecu-
lar fragments, Glycoconjugate J., 2010, 27, 349–358.
63 K.-I. Kasai, Y. Oda, M. Nishikata and S.-I. Ishii, Frontal affinity-chrom-
atography: theory for its application to studies on specific interactions of
biomolecules, J. Chromatogr., Biomed. Appl., 1986, 376, 33–47.
64 T. L. Hwang and A. J. Shaka, Water suppression that works. Excitation
sculpting using arbitrary waveforms and pulsed field gradients, J. Magn.
Reson., Ser. A, 1995, 112, 275–279.
65 Ē. Kupče, J. Boyd and I. D. Campbell, Short selective pulses for bio-
chemical applications, J. Magn. Reson., Ser. B, 1995, 106, 300–303.
66 R. Laatikainen, M. Niemitz, U. Weber, J. Sundelin, T. Hassinen and
J. Vepsäläinen, General strategies for total-lineshape-type spectral analy-
sis of NMR spectra using integral-transform iterator, J. Magn. Reson.,
Ser. A, 1996, 120, 1–10.
67 L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz,
J. Phillips, A. Shinozaki, K. Varadarajan and K. Schulten, NAMD2:
greater scalability for parallel molecular dynamics, J. Comput. Phys.,
1999, 151, 283–312.
68 J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé and K. Schulten, Scalable molecular
dynamics with NAMD, J. Comput. Chem., 2005, 26, 1781–1802.
69 W. Humphrey, A. Dalke and K. Schulten, VMD: visual molecular
dynamics, J. Mol. Graphics, 1996, 14, 33–38, 27–28.
70 A. Pedretti, L. Villa and G. Vistoli, VEGA: a versatile program to
convert, handle and visualize molecular structure on Windows-based
PCs, J. Mol. Graphics Modell., 2002, 21, 47–49.
71 S. Kemper, M. K. Patel, J. C. Errey, B. G. Davis, J. A. Jones and
T. D. W. Claridge, Group epitope mapping considering relaxation of the
ligand (GEM-CRL): including longitudinal relaxation rates in the analysis
of saturation transfer difference (STD) experiments, J. Magn. Reson.,
2010, 203, 1–10.
52 S. Kozmon, R. Matuška, V. Spiwok and J. Koča, Three-dimensional
potential energy surface of selected carbohydrates’ CH/π dispersion inter-
actions calculated by high-level quantum mechanical methods, Chem.–
Eur. J., 2011, 17, 5680–5690.
53 G. B. McGaughey, M. Gagné and A. K. Rappé, π-Stacking interactions,
J. Biol. Chem., 1998, 273, 15458–15463.
72 J. Cavanagh, W. J. Fairbrother, A. G. Palmer III and N. J. Skelton, Classi-
cal NMR spectroscopy, in Protein NMR Spectroscopy: Principles and
Practice, Academic Press, Boston, 1st edn, 1996, p. 17.
73 S. Neal, A. M. Nip, H. Zhang and D. S. Wishart, Rapid and accurate cal-
culation of protein 1H, 13C and 15N chemical shifts, J. Biomol. NMR,
2003, 26, 215–240.
3032 | Org. Biomol. Chem., 2012, 10, 3019–3032
This journal is © The Royal Society of Chemistry 2012