10.1002/anie.201902872
Angewandte Chemie International Edition
COMMUNICATION
is scarce.[3h, 31] The reported strategy might open new routes for
the synthesis of fluorinated building blocks.
76; c) Y. Li, D.-H. Tu, Y.-J. Gu, B. Wang, Y.-Y. Wang, Z.-T. Liu, Z.-W.
Liu, J. Lu, Eur. J. Org. Chem. 2015, 2015, 4340-4343; d) Y. L.
Yagupolskii, N. V. Pavlenko, S. V. Shelyazhenko, A. A. Filatov, M. M.
Kremlev, A. I. Mushta, I. I. Gerus, S. Peng, V. A. Petrov, M. Nappa, J.
Fluorine Chem. 2015, 179, 134-141; e) H. Sakaguchi, Y. Uetake, M.
Ohashi, T. Niwa, S. Ogoshi, T. Hosoya, J. Am. Chem. Soc. 2017, 139,
12855-12862; f) T. Braun, G. Meißner, E. Kemnitz, K. Kretschmar,
Angew. Chem. Int. Ed. 2017, 56, 16338-16341, Angew. Chem., 2017,
129, 16556–16559; g) H. Sakaguchi, M. Ohashi, S. Ogoshi, Angew.
Chem. Int. Ed. 2018, 57, 328-332, Angew. Chem., 2018, 130, 334-338;
h) M. R. Crimmin, C. Bakewell, A. White, Angew. Chem. Int. Ed. 2018,
57, 6638-6642, Angew.Chem., 2018, 130, 6748-6752.
Acknowledgements
We would like to acknowledge the AvH Foundation, the research
training group GRK 1582/2 “Fluorine as a Key Element” and the
CRC 1349 “Fluorine-Specific Interactions” funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation, project 387284271) for financial support.
[12] D. Noveski, T. Braun, S. Krückemeier, J. Fluorine Chem. 2004, 125,
959-966.
[13] R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D.
Hoff, S. P. Nolan, J. Am. Chem. Soc. 2005, 127, 2485-2495.
[14] a) M. F. Kuehnel, P. Holstein, M. Kliche, J. Krüger, S. Matthies, D.
Nitsch, J. Schutt, M. Sparenberg, D. Lentz, Chem. Eur. J. 2012, 18,
10701-10714; b) B. M. Kraft, E. Clot, O. Eisenstein, W. W. Brennessel,
W. D. Jones, J. Fluorine Chem. 2010, 131, 1122-1132; c) R. T.
Thornbury, F. D. Toste, Angew. Chem. Int. Ed. 2016, 55, 11629-11632,
Angew. Chem., 2016, 128, 11801–11804; d) T. Ichitsuka, T. Fujita, J.
Ichikawa, ACS Catalysis 2015, 5, 5947-5950; e) J. Hu, X. Han, Y. Yuan,
Z. Shi, Angew. Chem. Int. Ed. 2017, 56, 13342-13346, Angew. Chem.,
2017, 129, 13527–13531.
[15] a) R. Kojima, K. Kubota, H. Ito, Chem. Commun. 2017, 53, 10688-
10691, and references within; b) M. Ohashi, S. Ogoshi, in
Organometallic Fluorine Chemistry, Vol. 52 (Eds.: T. Braun, R. Hughes),
Springer, Cham, 2014.
[16] T. Braun, F. Wehmeier, K. Altenhöner, Angew. Chem. Int. Ed. 2007, 46,
5321-5324, Angew. Chem., 2007, 119, 5415-5418.
Keywords: C–F activation • C–H activation • fluorido complexes
• fluorinated refrigerants • silanes
[1]
a) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A.
Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422-518; b) S.
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320-330; c) P. Jeschke, ChemBioChem 2004, 5, 570-589; d)
P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity and
Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
[2]
[3]
S. E. Manahan, Fundamentals of Environmental and Toxicological
Chemistry, Vol. Fourth CRC Press: Taylor & Francis Group, Boca
Raton, FL, 2013.
[17] L. Zámostná, T. Braun, Angew. Chem. Int. Ed. 2015, 54, 10652-10656,
Angew. Chem., 2015, 127, 10798–10802.
[18] Note that full conversion of the rhodium precursor was achieved after
the given reaction time according to the NMR data.
a) N. O. Andrella, K. Liu, B. Gabidullin, M. Vasiliu, D. A. Dixon, R. T.
Baker, Organometallics 2018, 37, 422-432; b) O. Eisenstein, J. Milani,
R. N. Perutz, Chem. Rev. 2017, 117, 8710-8753; c) T. Ahrens, J.
Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115, 931-972; d) H.
Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119-2183; e) K. Kikushima,
H. Sakaguchi, H. Saijo, M. Ohashi, S. Ogoshi, Chem. Lett. 2015, 44,
1019-1021; f) L. M. Alluhaibi, A. K. Brisdon, R. G. Pritchard, J. Fluorine
Chem. 2017, 203, 146-154; g) D. J. Harrison, G. M. Lee, M. C. Leclerc,
I. Korobkov, R. T. Baker, J. Am. Chem. Soc. 2013, 135, 18296-18299;
h) M. E. Slaney, M. J. Ferguson, R. McDonald, M. Cowie,
Organometallics 2012, 31, 1384-1396.
[19] Formation of phosphine and 5 can be explained by a dissociation of
PEt3 from a cationic intermediate which resembles A (Scheme 5)
leading in toluene as solvent to the cationic diphosphine rhodium
complex [Rh(η6-C7D8)(PEt3)2]+. In addition, presence of a small amount
of an unidentified precipitate suggests the formation of rhodium
compounds without phosphine ligands.
[20] A. L. Raza, T. Braun, Chem. Sci. 2015, 6, 4255-4260.
[21] a) N. L. Dean, J. S. McIndoe, Can. J. Chem. 2018, 96, 587-590; b) K.
Kikushima, M. Grellier, M. Ohashi, S. Ogoshi, Angew. Chem. Int. Ed.
2017, 56, 16191-16196, Angew. Chem. 2017, 129, 16409-16414.
[22] a) J. Horstmann, M. Niemann, K. Berthold, A. Mix, B. Neumann, H.-G.
Stammler, N. W. Mitzel, Dalton Trans. 2017, 46, 1898-1913; b) K.
Tamao, T. Hayashi, Y. Ito, M. Shiro, Organometallics 1992, 11, 2099-
2114.
[4]
[5]
a) L. Keyes, J. A. Love, C-H and C-X Bond Functionalization: Transition
Metal Mediation, The Royal Society of Chemistry, 2013; b) M. K.
Whittlesey, E. Peris, ACS Catalysis 2014, 4, 3152-3159; c) T. Fujita, K.
Fuchibe, J. Ichikawa, Angew. Chem. Int. Ed. 2019, 58, 390-402,
Angew.Chem., 2019, 131, 396-408; d) W. Chen, C. Bakewell, M. R.
Crimmin, Synthesis 2017, 49, 810-821.
a) G. Meier, T. Braun, Angew. Chem. Int. Ed. 2009, 48, 1546-1548,
Angew. Chem., 2009, 121, 1575–1577; b) R. J. Lindup, T. B. Marder, R.
N. Perutz, A. C. Whitwood, Chem. Commun. 2007, 3664-3666; c) M.
Aizenberg, D. Milstein, Science 1994, 265, 359-361; d) T. Stahl, H. F. T.
Klare, M. Oestreich, ACS Catalysis 2013, 3, 1578-1587; e) M. F.
Kuehnel, D. Lentz, T. Braun, Angew. Chem. Int. Ed. 2013, 52, 3328-
3348, Angew. Chem., 2013, 125, 3412–3433.
[23] M. Crimmin, A. J. P. White, N. A. Phillips, Adv. Synth. Catal. 2019, doi:
10.1002/adsc.201900234.
[24] M. Gómez-Gallego, M. A. Sierra, Chem. Rev. 2011, 111, 4857-4963.
[25] M. Pait, G. Kundu, S. Tothadi, S. Karak, S. Jain, K. Vanka, S. S. Sen,
Angew. Chem. Int. Ed. 2019, 58, 2804-2808, Angew. Chem., 2019, 131,
2830-2834.
[6]
a) D. Noveski, T. Braun, M. Schulte, B. Neumann, H.-G. Stammler,
Dalton Trans. 2003, 4075-4083; b) T. Braun, D. Noveski, B. Neumann,
H.-G. Stammler, Angew. Chem. Int. Ed. 2002, 41, 2745-2748, Angew.
Chem., 2002, 114, 2870–2873; c) M. Teltewskoi, J. A. Panetier, S. A.
Macgregor, T. Braun, Angew. Chem. Int. Ed. 2010, 49, 3947-3951,
Angew. Chem., 2010, 122, 4039-4043; d) T. Braun, M. Ahijado
Salomon, K. Altenhöner, M. Teltewskoi, S. Hinze, Angew. Chem. Int.
Ed. 2009, 48, 1818-1822, Angew. Chem., 2009, 121, 1850-1854; e) T.
Ahrens, M. Ahrens, T. Braun, B. Braun, R. Herrmann, Dalton Trans.
2016, 45, 4716-4728; f) A. Lena Raza, M. F. Kuehnel, M. Talavera, M.
Teltewskoi, M. Ahrens, P. Kläring, T. Braun, D. Lentz, J. Fluorine Chem.
2018, 214, 80-85.
[26] a) S. G. Curto, M. A. Esteruelas, M. Oliván, E. Oñate, A. Vélez,
Organometallics 2018, 37, 1970-1978; b) A. Guthertz, M. Leutzsch, L.
M. Wolf, P. Gupta, S. M. Rummelt, R. Goddard, C. Farès, W. Thiel, A.
Fürstner, J. Am. Chem. Soc. 2018, 140, 3156-3169; c) L.-J. Song, T.
Wang, X. Zhang, L. W. Chung, Y.-D. Wu, ACS Catalysis 2017, 7, 1361-
1368; d) C. Zhu, X. Zhou, H. Xing, K. An, J. Zhu, H. Xia, Angew. Chem.
Int. Ed. 2015, 54, 3102-3106, Angew. Chem., 2015, 127, 3145-3149.
[27] T. Luo, R. Zhang, W. Zhang, X. Shen, T. Umemoto, J. Hu, Org. Lett.
2014, 16, 888-891.
[28] a) G. Meißner, D. Dirican, C. Jäger, T. Braun, E. Kemnitz, Catal. Sci.
Technol. 2017, 7, 3348-3354; b) B. Calvo, C. P. Marshall, T. Krahl, J.
Kröhnert, A. Trunschke, G. Scholz, T. Braun, E. Kemnitz, Dalton Trans.
2018, 47, 16461-16473.
[7]
[8]
T. Ahrens, M. Teltewskoi, M. Ahrens, T. Braun, R. Laubenstein, Dalton
Trans. 2016, 45, 17495-17507.
[29] The counteranion of 5 could not be identified until [BF4]- was observed
after a few hours. Note that HF can react with Bpin derivatives to form
BF3 and then, [BF4]-. In fact, when Et3N/CsCO3 is added to trap HF, full
conversion to complex 4 is observed.
a) D. Noveski, T. Braun, B. Neumann, A. Stammler, H.-G. Stammler,
Dalton Trans. 2004, 4106-4119; b) S. I. Kalläne, M. Teltewskoi, T.
Braun, B. Braun, Organometallics 2015, 34, 1156−1169; c) A. L. Raza,
J. A. Panetier, M. Teltewskoi, S. A. Macgregor, T. Braun,
Organometallics 2013, 32, 3795-3807.
[30] S. Scheiner, J. Phys. Chem. A 2018, 122, 2550-2562.
[31] a) P. Tian, C. Feng, T.-P. Loh, Nat. Commun. 2015, 6, 7472; b) D. Yu,
L. Lu, Q. Shen, Org. Lett. 2013, 15, 940-943; c) D. Zell, U. Dhawa, V.
Müller, M. Bursch, S. Grimme, L. Ackermann, ACS Catalysis 2017, 7,
4209-4213.
[9]
E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N.
Perutz, Acc. Chem. Res. 2011, 44, 333-348.
[10] B. Minor, M. Spatz, HFO-1234yf Low GWP Refrigerant Update,
International Refrigeration and Air Conditioning Conference, Paper 937,
2008.
[11] a) W. Mao, Y. Bai, W. Wang, B. Wang, Q. Xu, L. Shi, C. Li, J. Lu,
ChemCatChem 2017, 9, 824-832; b) Y. Hiraoka, T. Kawasaki-
Takasuka, Y. Morizawa, T. Yamazaki, J. Fluorine Chem. 2015, 179, 71-
This article is protected by copyright. All rights reserved.