(230 mL) and Grubbs’ catalyst I was added (15.5 mg, 0.0188
mmol). The mixture was refluxed for 2 days under Ar flow until
TLC (light petroleum–diethyl ether 80 : 20) showed complete
disappearance of the starting material. Most of the solvent was
then distilled off and the concentrated solution left to stir at rt
for 2 h under air bubbling in order to decompose the catalyst.
Evaporation to dryness gave a brown residue which was
purified by chromatography on silica gel; slow elution with light
petroleum–diethyl ether mixtures (from 97 : 3 to 80 : 20)
allowed separation of the desired trans stereoisomer (E)-22 (29
mg) from cis derivative (Z)-22 (14 mg) (combined 92% yield).
(5R,6R,7E,10S)-22. [α]D Ϫ37.9 (c 3.0). 1H NMR (200 MHz):
δ 0.90 (3H, t, J 6.5, 3 × H-7Ј), 1.27 (8H, br envelope, H-3Ј to
H-6Ј), 1.41 (6H, s, 2 × Me2C), 1.51–1.80 (2H, m, 2 × H-2Ј),
1.87–2.71 (6H, m, 2 × H-3, H-4 and H-9), 3.47 (1H, m, H-1Ј),
3.64 (1H, m, H-5), 3.92 (1H, t, J 9.2, H-6), 4.56 (1H, d, J 11.6,
CH2Ph), 4.65 (1H, d, J 11.6, CH2Ph), 4.95 (1H, m, H-10), 5.32
(1H, dd, J 15.6, 9.2, H-7), 5.78 (1H, ddd, J 15.6, 11.0, 4.7, H-8),
7.29–7.40 (5H, m, arom). 13C NMR: δ 14.0, 22.5, 25.4, 25.6,
26.9, 27.1, 29.4, 29.7, 31.7, 34.2, 72.5, 73.4, 79.8, 80.4, 84.4,
108.8, 127.8, 127.9, 128.4, 129.2, 130.3, 138.2, 171.8. MS, m/z:
430 (Mϩ, 0.22%), 415 (0.33), 373 (0.60), 328 (1.1), 298 (0.71),
237 (3.3), 220 (1.8), 205 (4.3), 203 (7.0), 179 (1.8), 123 (6.2), 113
(14), 91 (100), 85 (23), 79 (6.2), 65 (3.1), 55 (5.5). (Found: C,
72.4; H, 9.0. C26H38O5 requires: C, 72.5; H, 8.9%).
J 11.3, 4.9, 3.3, H-10), 5.08 (1H, dd, J 15.7, 9.4, H-7 minor),
5.53 (1H, dddd, J 15.8, 10.3, 5.3, 2.2, H-8), 5.69 (1H, m, H-8
minor), 5.73 (1H, dd, J 15.8, 2.5, H-7). 13C NMR (100 MHz,
CD3CN; referenced to CD3CN at 118.26 ppm): δ 14.4 (C-7Ј),
23.3 (C-6Ј), 26.1 (C-3Ј), 26.5 (C-4), 29.3 (C-3), 30.0 (C-4Ј), 32.2
(C-9, minor conformer), 32.3 (C-5Ј, minor), 32.6 (C-5Ј), 33.9
(C-2Ј, minor), 34.3 (C-2Ј), 35.9 (C-3, minor), 36.7 (C-9), 72.5
(C-6), 72.9 (C-1Ј), 73.5 (C-5), 73.8 (C-1Ј, minor), 76.4 (C-10,
minor), 77.0 (C-5, minor), 79.5 (C-6, minor), 79.7 (C-10), 126.7
(C-8), 130.0 (C-8, minor), 133.8 (C-7, minor), 134.6 (C-7), 173.5
(C-2, minor), 176.4 (C-2) [see also electronic supporting
1
information (ESI) for original H and 13C NMR spectra of
synthetic 1]. MS, m/z: 301 ([M ϩ 1]ϩ, 1.4%), 283 (0.55), 265
(0.78), 198 (6.2), 180 (55), 162 (1.2), 151 (3.5), 141 (10), 129 (30),
113 (13), 110 (16), 95 (39), 84 (100), 73 (44), 70 (80), 55 (64).
(Found: C, 63.9; H, 9.2. C16H28O5 requires: C, 64.0; H, 9.4%).
Acknowledgements
We are grateful to the Università di Modena e Reggio Emilia
(“Progetto Giovani Ricercatori” to P.D.) for financial support.
Spectroscopic assistance from the staff at Centro Inter-
dipartimentale Grandi Strumenti (Università di Modena) has
been greatly appreciated throughout the project. We thank
Stefania Morandi and Chiara Danieli for critically examining
NMR assignments of pinanediol boronates. We are also
grateful to Dr Claudia Zucchi for kindly providing Fürstner’s
catalyst III.
1
(5R,6R,7Z,10S)-22. [α]D ϩ4.5 (c 1.6). H NMR (200 MHz):
δ 0.89 (3H, t, J 6.5, 3 × H-7Ј), 1.27 (8H, br envelope, H-3Ј to
H-6Ј), 1.40 (3H, s, Me2C), 1.42 (3H, s, Me2C), 1.50–1.77 (2H,
m, 2 × H-2Ј), 2.01–2.77 (6H, m, 2 × H-3, H-4 and H-9), 3.49
(1H, m, H-1Ј), 3.66 (1H, ddd, J 10.2, 9.5, 2.3, H-5), 4.52 (1H,
dd, J 9.5, 8.0, H-6), 4.58 (1H, d, J 11.6, CH2Ph), 4.66 (1H, d,
J 11.6, CH2Ph), 5.10 (1H, ddd, J 11.8, 4.4, 2.2, H-10), 5.50 (1H,
t, J 10.3, H-7), 5.74 (1H, dt, J 10.3, 7.0, H-8), 7.28–7.44 (5H, m,
arom). 13C NMR: δ 14.0, 22.5, 25.4, 26.8, 27.0, 29.3, 29.6, 30.5,
31.7, 32.1, 72.6, 72.8, 77.1, 79.7, 81.5, 107.6, 127.7, 128.4, 130.3,
130.9, 138.0, 176.6. MS, m/z: 430 (Mϩ, 0.69%), 415 (2.3), 373
(0.30), 328 (1.1), 298 (0.60), 265 (1.7), 237 (3.0), 220 (1.7), 205
(3.9), 203 (6.3), 179 (2.5), 123 (5.1), 113 (13), 91 (100), 85 (16),
79 (6.6), 65 (3.1), 55 (6.6). (Found: C, 72.7; H, 9.1. C26H38O5
requires: C, 72.5; H, 8.9%).
References
1 (a) J. Gusman and M. Vanhaelen, Recent Res. Dev. Phytochem.,
2000, 4, 187–206; (b) R.-X. Tan and W.-H. Zou, Nat. Prod. Rep.,
2001, 18, 448–459; (c) B. Schulz, C. Boyle, S. Draeger, A. K.
Rommert and K. Krohn, Mycol. Res., 2002, 106, 996–1004.
2 For recent examples: (a) D. B. Stierle, A. A. Stierle and T. Bugni,
J. Org. Chem., 2003, 68, 4966–4969; (b) G. Y. Chen, Y. C. Lin,
L. Wen, L. L. P. Vrijmoed and E. B. G. Jones, Tetrahedron, 2003, 59,
4907–4909; (c) J. A. Findlay, G. Q. Li, J. D. Miller and
T. O. Womiloju, Can. J. Chem., 2003, 81, 284–292; (d ) A. Abdel-
Lateff, C. Klemke, G. M. König and A. D. Wright, J. Nat. Prod.,
2003, 66, 706–708; (e) P. Kongsaeree, S. Prabpai, N. Sriubolmas,
C. Vongvein and S. Wiyakrutta, J. Nat. Prod., 2003, 66, 709–711; ( f )
B. Köpke, R. W. S. Weber and H. Anke, Phytochemistry, 2002, 60,
709–714; (g) G. Strobel, E. Ford, J. Worapong, J. K. Harper,
A. M. Arif, D. M. Grant, P. C. W. Fung and R. M. W. Chau,
Phytochemistry, 2002, 60, 179–183; (h) S. F. Brady, S. M. Bondi and
J. Clardy, J. Am. Chem. Soc., 2001, 123, 9900–9901; (i) J. Y. Li,
J. K. Harper, D. M. Grant, B. O. Tombe, B. Bashyal, W. M. Hess and
G. A. Strobel, Phytochemistry, 2001, 56, 463–468.
3 A. S. Ratnayake, W. Y. Yoshida, S. L. Mooberry and T. Hemscheidt,
Org. Lett., 2001, 3, 3479–3481.
4 B. Bodo, L. Molho, D. Davoust and D. Molho, Phytochemistry,
1983, 22, 447–451.
5 (a) A. Evidente, R. Lanzetta, R. Capasso, M. Vurro and
A. Bottalico, Phytochemistry, 1993, 34, 999–1003; (b) A. Evidente,
R. Capasso, M. A. Abouzeid, R. Lanzetta, M. Vurro and
A. Bottalico, J. Nat. Prod., 1993, 56, 1937–1943.
6 A. Arnone, G. Assante, M. Montorsi, G. Nasini and E. Ragg, Gazz.
Chim. Ital., 1993, 123, 71–73.
7 (a) A. Evidente, R. Lanzetta, R. Capasso, A. Andolfi, A. Bottalico,
M. Vurro and M. C. Zonno, Phytochemistry, 1995, 40, 1637–1641;
(b) A. Evidente, R. Lanzetta, R. Capasso, A. Andolfi, M. Vurro and
M. C. Zonno, Phytochemistry, 1997, 44, 1041–1045; (c) A. Evidente,
R. Capasso, A. Andolfi, M. Vurro and M. C. Zonno,
Phytochemistry, 1998, 48, 941–945.
8 (a) J. F. Rivero-Cruz, G. García-Aguirre, C. M. Cerda-García-Rojas
and R. Mata, Tetrahedron, 2000, 56, 5337–5344; (b) J. F. Rivero-
Cruz, M. Macías, C. M. Cerda-García-Rojas and R. Mata, J. Nat.
Prod., 2003, 66, 511–514.
9 Reviews: (a) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001,
34, 18–29; (b) A. Fürstner, Angew. Chem., Int. Ed., 2000, 39,
3012–3043; (c) R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54,
4413–4450.
10 (a) D. S. Matteson, Acc. Chem. Res., 1988, 21, 294–300; (b)
D. S. Matteson, Chem. Rev., 1989, 89, 1535–1551; (c)
D. S. Matteson, J. Organomet. Chem., 1999, 581, 51–65.
(5R,6R,7E,10S )-5,6-Dihydroxy-10-[(1ЈS )-1Ј-hydroxyheptyl]-
3,4,5,6,9,10-hexahydro-2H-oxecin-2-one (microcarpalide, 1)3.
Titanium tetrachloride (66 µL, 0.605 mmol) in anhydrous
CH2Cl2 (0.5 mL) was slowly added dropwise over 10 min to a
stirred solution of trans derivative E-22 (26 mg, 0.0605 mmol)
in dry CH2Cl2 (2.5 mL) cooled to 0 ЊC. After 1.5 h the ochre-
yellow cloudy mixture was poured in water (5 mL), diluted with
CH2Cl2 (4 mL) and treated with satd. NaHCO3 (8 mL), brine
(5 mL) and EtOAc (15 mL) in a separating funnel. After
settling, the upper milky layer was discarded, whereas the clear
lower phase was separated, dried (Na2SO4), filtered and concen-
trated under reduced pressure; silica gel chromatography of
the crude residue using ethyl acetate as the eluant afforded
microcarpalide 1 as a beige oil (12 mg, 66%), [α]D Ϫ23.6 (c 1.0,
MeOH) (lit.,3 Ϫ22). NMR analysis clearly showed the presence
of two slowly interconverting conformers in a 76 : 24 ratio
(in CD3CN), which is identical to the value described in the
literature for the natural compound in the same solvent.3 1H
NMR (400 MHz, CD3CN; referenced to the residual proton at
1.96 ppm): δ 0.91 (3H, t, J 6.8, 3 × H-7Ј), 1.26–1.38 (8H, br
envelope, H-3Ј to H-6Ј), 1.41–1.47 (2H, br m, 2 × H-2Ј), 1.80
(1H, br dddd, H-4), 2.02 (1H, br ddd, H-4 minor conformer),
2.11–2.23 (3H, br m, H-3, H-4 and H-9), 2.27–2.34 (1H, br m,
H-9), 2.36 (1H, ddd, J 5.2, 2.7, 1.1, H-9 minor), 2.47–2.58 (1H,
m, H-3), 2.83 (1H, d, J 5.8, 1Ј-OH ), 2.86 (1H, d, J 6.4, 6-OH ),
3.09 (1H, d, J 4.1, 5-OH ), 3.19 (1H, d, J 3.2, 5-OH minor), 3.28
(1H, br dt, H-5 minor), 3.54–3.60 (1H, br m, H-1Ј), 3.64 (1H,
dt, J 3.1, 9.1, H-6 minor), 3.80 (1H, br m, H-5), 4.13 (1H, br m,
H-6), 4.63 (1H, ddd, J 8.4, 4.5, 2.7, H-10 minor), 4.84 (1H, ddd,
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2, 3 8 – 4 7
46