Syn th esis of [Gly-1]RA-VII, [Gly-2]RA-VII, a n d [Gly-4]RA-VII.
Glycin e-Con ta in in g An a logu es of RA-VII, a n An titu m or Bicyclic
Hexa p ep tid e fr om Ru bia P la n ts
Yukio Hitotsuyanagi,† Tomoyo Hasuda,† Takayuki Aihara,† Hiroshi Ishikawa,†
Kentaro Yamaguchi,‡ Hideji Itokawa,† and Koichi Takeya*,†
School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, J apan, and Chemical Analysis Center, Chiba University, Yayoi-cho, Inage-ku,
Chiba 263-8522, J apan
takeyak@ps.toyaku.ac.jp
Received September 23, 2003
Three analogues of RA-VII (1), an antitumor bicyclic hexapeptide from Rubia plants, were
synthesized. Three analogues, [Gly-1]RA-VII (4), [Gly-2]RA-VII (5), and [Gly-4]RA-VII (6), in which
one of the three alanine residues in 1 was replaced by a glycine residue, were prepared by linking
of the cycloisodityrosine unit, obtained by degradation of 1, to three different glycine-containing
tetrapeptides followed by macrocyclization. Of these three analogues, analogue 4 showed the highest
cytotoxic activity. The NMR study revealed that in solution the conformer structures and their
ratios of analogue 4 were very similar to those of natural peptide 1, suggesting that the methyl
groups at Ala-2 and Ala-4 should be essential for producing the bioactive conformation, whereas
that at D-Ala-1 is not essential.
In tr od u ction
also be vital because some cycloisodityrosine-containing
RA-VII analogues, in which the tetrapeptide fragment
of the 18-membered ring is modified by reduction,8 by
cleavage of the 18-membered ring,9 or by replacement
with a polyglycine unit,10 show a very weak or no
cytotoxic activity. The configuration of certain amino acid
residues in cyclic peptides takes part in deciding the
conformation of peptide rings11 and thus should affect the
conformation of the whole molecule. In the present study,
we studied the effect of the three alanyl methyls of the
18-membered ring in 1 upon its conformation and cyto-
toxic activity by syntheses of RA-VII analogues in which
one of the three alanines was replaced by glycine.
Information obtained by this study may provide a useful
knowledge for designing more simple and more active
analogues of RA-VII with a reduced number of chiral
centers.
An antitumor bicyclic hexapeptide RA-VII (1) and its
16 congeners have been isolated from Rubia akane and
Rubia cordifolia (Rubiaceae),1-3 and two related peptides,
bouvardin (NSC 259968) (2) and deoxybouvardin (3),
were isolated from another plant of this family, Bou-
vardia ternifolia.4 The structures of the peptides of this
series are characterized by two macrocyclic rings, i.e., an
18-membered cyclohexapeptide ring and a 14-membered
cycloisodityrosine ring, fused together to form a 26-
membered ring. The antitumor action of 1 is considered
to be due to the inhibition of protein synthesis through
its interaction with eukaryotic 80S ribosomes,5,6 and the
cycloisodityrosine ring is proposed to be the pharmaco-
phore in this type of peptides because cycloisodityrosine
itself shows a potent cytotoxic activity.7 However, the role
of the 18-membered ring moiety in the activity should
(7) (a) Boger, D. L.; Myers, J . B.; Yohannes, D.; Kitos, P. A.;
Suntornwat, O.; Kitos, J . C. Bioorg Med. Chem. Lett. 1991, 1, 313-
316. (b) Boger, D. L.; Yohannes, D.; Myers, J . B. J . Org. Chem. 1992,
57, 1319-1321. (c) Boger, D. L.; Yohannes, D.; Zhou, J .; Patane, M. A.
J . Am. Chem. Soc. 1993, 115, 3420-3430. (d) Boger, D. L.; Patane, M.
A.; J in, Q.; Kitos, P. A. Bioorg. Med. Chem. 1994, 2, 85-100.
(8) Hitotsuyanagi, Y.; Matsumoto, Y.; Sasaki, S.; Suzuki, J .; Takeya,
K.; Yamaguchi, K.; Itokawa, H. J . Chem. Soc., Perkin Trans. 1 1996,
1749-1755.
* To whom correspondence should be addressed.
† Tokyo University of Pharmacy and Life Science.
‡ Chiba University.
(1) (a) Itokawa, H.; Takeya, K.; Mori, N.; Hamanaka, T.; Sonobe,
T.; Mihara, K. Chem. Pharm. Bull. 1983, 31, 1424-1427. (b) Itokawa,
H.; Takeya, K.; Mihara, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka,
Y. Chem. Pharm. Bull. 1984, 32, 284-290.
(2) Itokawa, H.; Takeya, K.; Hitotsuyanagi, Y.; Morita, H. In The
Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1997; Vol.
49, pp 301-387.
(9) Hitotsuyanagi, Y.; Kondo, K.; Takeya, K.; Itokawa, H. Tetrahe-
dron Lett. 1994, 35, 2191-2194.
(3) Hitotsuyanagi, Y.; Aihara, T.; Takeya, K. Tetrahedron Lett. 2000,
41, 6127-6130.
(10) Boger, D. L.; Zhou, J .; Winter, B.; Kitos, P. A. Bioorg. Med.
Chem. 1995, 3, 1579-1593.
(4) J olad, S. D.; Hoffmann, J . J .; Torrance, S. J .; Wiedhopf, R. M.;
Cole, J . R.; Arora, S. K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J .
Am. Chem. Soc. 1977, 99, 8040-8044.
(11) (a) Monahan, M. W.; Amoss, M. S.; Anderson, H. A.; Vale, W.
Biochemistry 1973, 12, 4616-4620. (b) Rich, D. H.; Bhatnagar, P. K.;
J asensky, R. D.; Steele, J . A.; Uchytil, T. F.; Durbin, R. D. Bioorg.
Chem. 1978, 7, 207-214. (c) Mu¨ller, G.; Gurrath, M.; Kessler, H.;
Timpl, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 326-328. (d) Wenger,
R. M.; France, J .; Bovermann, G.; Walliser, L.; Widmer, A.; Widmer,
H. FEBS Lett. 1994, 340, 255-259.
(5) Zalaca´ın, M.; Zaera, E.; Va´zquez, D.; J ime´nez, A. FEBS Lett.
1982, 148, 95-97.
(6) Sirdeshpande, B. V.; Toogood, P. L. Bioorg. Chem. 1995, 23, 460-
470.
10.1021/jo030293p CCC: $27.50 © 2004 American Chemical Society
Published on Web 02/03/2004
J . Org. Chem. 2004, 69, 1481-1486
1481