J. R. Vy6yan et al. / Tetrahedron Letters 43 (2002) 221–224
223
time. The synthesis covers five steps and produces keto
lactone 10 in 8% yield from 4. Diastereomeric keto
lactone 12 was produced in 15% yield from 4 using the
same sequence of reactions. Our current focus in on the
installation of the heteroatom substituent and control
of absolute stereochemistry in the preparation of 1 and
2.
hedron 1995, 51, 3389–3394; (d) Doyle, M. P.; Dyatkin,
A. B. J. Org. Chem. 1995, 60, 3035–3038; (e) Rieke, R.
D.; Sell, M. S. Xiong, H. J. Org. Chem. 1995, 60,
5143–5149; (f) Quayle, P.; Rahman, S.; Ward, E. L. M.;
Herbert, J. Tetrahedron Lett. 1994, 35, 3801–3804; (f)
Quayle, P.; Ward, E. L. M.; Taylor, P. Tetrahedron Lett.
1994, 35, 8883–8884; (g) Canonne, P.; Boulanger, R.;
Angers, P. Tetrahedron Lett. 1991, 32, 5861–5864; (h)
Black, T. H.; DuBay, W. J., III; Tully, P. S. J. Org.
Chem. 1988, 53, 5922–5927; (i) Canonne, P.; Belanger,
D.; Lemay, G.; Foscolos, G. B. J. Org. Chem. 1981, 46,
3091–3097; (j) Trost, B. M.; Bogdanowicz, M. J. J. Am.
Chem. Soc. 1973, 95, 5321–5334.
Note added in proof. The authors were alerted to a
nearly identical synthesis of spirolactone 10 carried out
by Diaz and Coelho after acceptance of this paper.33
Acknowledgements
14. Taylor, S. K. Tetrahedron 2000, 56, 1149–1163.
15. Cahiez, G.; Alexakis, A.; Normant, J. F. Tetrahedron
Lett. 1978, 3013–3014.
J.R.V. and C.A.R. thank The Camille and Henry Drey-
fus Foundation, the Western Washington University
Bureau of Faculty Research and the donors of the
Petroleum Research Fund, administered by the Ameri-
can Chemical Society, for partial support of this
research. X-ray crystallographic studies were supported
by the National Science Foundation (CHE-0078746 to
J.A.H.) and the University of Wisconsin-Eau Claire.
16. Characterization data for 7a: IR (neat) w 3380, 3072,
1
1633, 1060, and 1004 cm−1; H NMR (CDCl3, 300 MHz):
l 6.17 (dtd, J=17.2, 10.0, 5.1 Hz, 1H), 5.16 (dtd, J=
17.2, 2.1, 0.5 Hz, 1H), 5.08 (dt, J=10.0, 2.1 Hz, 1H), 3.66
(m, 2H), 2.41 (dd, J=15.3, 10.0 Hz, 1H), 2.2 (m, 3H),
1.9–1.2 (m, 11H), 0.88 (d, J=6.8 Hz, 3H), and 0.81 (s,
3H). 1H NMR (C6D6, 300 MHz): l 6.13 (dddd, J=17,
10, 9, 6 Hz, 1H), 5.05 (br d, J=17 Hz, 1H), 4.94 (br d,
J=10 Hz, 1H), 3.56 (m, 2H), 2.46 (br s, 2H,), 2.31 (dd,
J=15.3, 9 Hz, 1H), 2.18 (m, 1H), 2.07 (dt, J=15.3, 6 Hz,
1H), 1.9–1.1 (m, 10H), 0.79 (d, J=6.8 Hz, 3H), and 0.63
(s, 3H). 13C NMR (CDCl3, 75 MHz): l 138.6, 116.9, 77.8,
63.9, 39.8, 33.6, 31.7, 31.2, 30.1, 26.7, 21.1, 17.5, and
16.1. Characterization data for 8a: mp 70–73°C: IR (neat,
References
1. Carney, J. R.; Pham, A. T.; Yoshida, W. Y.; Scheuer, P.
J. Tetrahedron Lett. 1992, 33, 7115–7118.
2. Su, J.-Y.; Zhong, Y.-L.; Zeng, L.-M. J. Nat. Prod. 1993,
56, 288–291.
3. Zhao, D.; Liu, X.; Zhong, H.; Li, C. Hiayang Xuebao
1996, 18, 125–129; Chem. Abstr. 125:163644.
4. Taylor, S. K.; Chmiel, N. H.; Mann, E. E.; Silver, M. E.;
dep. CDCl3) w 3080, 3071, 1633, 1063, 987, and 906 cm−1
;
1H NMR (CDCl3, 300 MHz): l 6.13 (dddd, J=17, 10.2,
9.0, and 6.1 Hz, 1H), 5.14 (br d, J=17 Hz, 1H), 5.08 (br
d, J=10.2 Hz, 1H), 3.67 (m, 2H), 2.3–1.2 (m, 13H), 1.01
(s, 3H), and 0.87 (d, J=6.7 Hz, 3H). 13C NMR (CDCl3,
75 MHz): l 138.2, 117.0, 77.7, 63.7, 45.2, 41.4, 37.7, 30.8,
30.3, 30.2, 26.5, 22.0, 16.6, and 13.0.
Vyvyan, J. R. Synthesis 1998, 1009–1014.
5. Warnhoff, E. W.; Martin, D. G.; Johnson, W. S. Organic
Syntheses, Coll. Vol. IV; Wiley: New York, 1963; p. 162.
6. Boeckman, R. K. J. Org. Chem. 1973, 38, 4450–4452.
7. Similar difficulty with this reaction has been encountered
by others: Haraldsson, G. G.; Paquette, L. A.; Springer,
J. P. J. Chem. Soc., Chem. Commun. 1985, 1035–1036.
8. Huang, H.; Forsyth, C. J. J. Org. Chem. 1995, 60,
5746–5747.
9. (a) Jung, M. E.; McCombs, C. A.; Takeda, Y.; Pan,
Y.-G. J. Am. Chem. Soc. 1981, 103, 6677–6685; (b)
Chong, B.; Ji, Y.-I.; Oh, S.-S.; Yang, J.-D.; Baik, W.;
Koo, S. J. Org. Chem. 1997, 62, 9323–9325.
17. Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima,
T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392–4398.
18. Prepared by treating a cold (−78°C) ether solution of
3-iodo-1-methoxymethoxypropane (see Ref. 20) with tert-
butyllithium (2.1 equiv.).
19. Piers, E.; Wai, J. S. M. Can. J. Chem. 1994, 72, 146–157.
20. Characterization data for 7b: IR (neat) w 3563, 3072,
1
1633, 1148, 1038, and 918 cm−1. H NMR (CDCl3, 300
MHz): l 6.17 (dtd, J=17, 10, 5.2 Hz, 1H), 5.12 (br d,
J=17 Hz, 1H), 5.05 (br d, J=10 Hz, 1H), 4.63 (s, 2H),
3.55 (m, 2H), 3.37 (s, 3H), 2.39 (dd, J=15.3, 9.9 Hz, 1H),
2.21 (m, 2H), 1.90 (s, 1H), 1.8–1.2 (m, 10H), 0.87 (d,
J=6.9 Hz, 3H), and 0.80 (s, 3H); 13C NMR (CDCl3, 75
MHz): l 138.7, 116.4, 96.3, 77.5, 68.7, 55.1, 44.8, 39.9,
33.4, 31.7, 31.4, 30.2, 23.5, 21.2, 17.4, and 16.1. Anal.
calcd for C16H30O3 (mixture of 7b and 8b): C, 71.07; H,
11.18. Found: C, 71.06; H, 10.95. Characterization data
for 8b: IR (neat) w 3502, 3071, 1633, 1151, 1109, 1040,
10. Caine, D.; Chao, S. T.; Smith, H. A. In Organic Synthe-
sis, Coll. Vol. VI; Noland, W. E., Ed.; Wiley: New York,
1974; p. 51.
11. Srikrishna, A.; Reddy, T. J.; Nagaraju, S.; Sattigeri, J. A.
Tetrahedron Lett. 1994, 35, 7841–7844.
12. For reviews on lactone synthesis, see: (a) Collins, I. J.
Chem. Soc., Perkin Trans. 1 1999, 1377–1395; (b) Collins,
I. J. Chem. Soc., Perkin Trans. 1 1998, 1869–1888; (c)
Collins, I. Contemp. Org. Synth. 1997, 4, 281–307; (d)
Collins, I. Contemp. Org. Synth. 1996, 3, 295–321.
13. Other selected examples of spirolactone syntheses: (a)
Michaut, M.; Santelli, M.; Parrain, J. L. J. Organomet.
Chem. 2000, 606, 93–96; (b) Paruch, E.; Ciunik, Z.;
Wawrzenczyk, C. Eur. J. Org. Chem. 1998, 2677–2682;
(c) Das. J.; Choudhury, P. K.; Chandrasekaran, S. Tetra-
and 917 cm−1 1H NMR (CDCl3, 300 MHz): l 6.12
;
(dddd, J=17.2, 10.2, 9.1, 5.8 Hz, 1H), 5.09 (m, 2H), 4.62
(s, 2H), 3.56 (m, 2H), 3.38 (s, 3H), 2.3–1.2 (m, 12H), 1.02
(s, 3H), and 0.85 (d, J=6.7 Hz, 3H); 13C NMR (CDCl3,
75 MHz): l 138.3, 116.6, 96.3, 77.4, 68.5, 55.1, 45.2, 41.6,
37.6, 30.8, 30.3, 30.2, 23.4, 22.1, 16.6, and 13.1.
21. Enders, D.; Thiebes, C. Synlett 2000, 1745–1748.