Journal of the American Chemical Society
Communication
(c) May, T. L.; Dabrowski, J. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2011,
133, 736. (d) McGrath, K. P.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2014, 53, 1910.
(5) See for example: (a) Mikami, K.; Aikawa, K. Asymmetric ene
reactions and cycloadditions. Catalytic Asymmetric Synthesis; Ojima, I.,
Ed.; John Wiley: Hoboken, NJ, 2010; pp 725−733. (b) Kawasaki, M.;
Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 16482. (c) For an
enantioselective intramolecular addition of a siloxydiene to an alkyne
leading to a chiral silyl enol ether, see ref 2g.
(6) For details of the optimization studies, see SI Tables 1 and 2.
(7) (a) Timsina, Y. N.; Sharma, R. K.; RajanBabu, T. V. Chem. Sci.
2015, 6, 3994. (b) Sharma, R. K.; RajanBabu, T. V. J. Am. Chem. Soc.
2010, 132, 3295. (c) For the first report of a Co-catalyzed asymmetric
hydrovinylation, see: Grutters, M. M. P.; Muller, C.; Vogt, D. J. Am.
Chem. Soc. 2006, 128, 7414. (d) For recent reviews of hydrovinylation,
see: RajanBabu, T. V.; Smith, C. R. Enantioselective Hydrovinylation of
Alkenes. Comprehensive Chirality; Carreira, E. M., Yamamoto, H., Eds.;
Elsevier: London, 2012; Vol. 5, pp 355−398. (e) Hilt, G. Eur. J. Org.
Chem. 2012, 2012, 4441.
vinyl triflates (12−17) and their subsequent cross coupling
reactions (typical examples of products: 18−20) proceed with
complete retention of configuration at the double bond and
preservation of the vinyl-bearing stereogenic center. Examples of
Kumada, Stille, and Suzuki coupling reactions of a prototypical
(SI). The reactivity difference between the monosubstituted and
the stereodefined trisubstituted double bonds in these 1,4-
skipped diene products14 should make these almost enantiopure
intermediates valuable components for further synthesis. Further
applications of the silyl enol ethers and the enol triflates are the
subject of ongoing investigations.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(8) Kersten, L.; Hilt, G. Adv. Synth. Catal. 2012, 354, 863.
(9) Reddy, S. S.; Radhakrishnan, K.; Sivaram, S. Polym. Bull. 1996, 36,
165.
Experimental details; typical reaction conditions for the
hydrovinylation reactions; chromatographic and spectro-
scopic data for all compounds (PDF)
(10) See SI for full experimental details.
(11) Engel, D. A.; Dudley, G. B. Org. Biomol. Chem. 2009, 7, 4149.
(12) The siloxydienes are significantly more reactive compared to the
corresponding unsubstituted dienes. For example, with 0.001 equiv.
catalyst, there is practically no reaction under otherwise identical
conditions for comparable substrates without the siloxy substituent.
Page, J. P.; RajanBabu, T. V. J. Am. Chem. Soc. 2012, 134, 6556−6559.
(13) Stang, P. J.; Mangum, M. G.; Fox, D. P.; Haak, P. J. Am. Chem. Soc.
1974, 96, 4562.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
(14) For two recent applications and a list of more extensive references,
see: (a) Macklin, T. K.; Micalizio, G. C. Nat. Chem. 2010, 2, 638.
(b) Huang, Y.; Fananas-Mastral, M.; Minnaard, A. J.; Feringa, B. L.
Chem. Commun. 2013, 49, 3309.
ACKNOWLEDGMENTS
■
Financial assistance for this research provided by US NSF (CHE-
1362095) and NIH (R01 GM108762) is gratefully acknowl-
edged. This paper is dedicated to Dr. William A. Nugent in
recognition of his many seminal contributions to synthetic
chemistry.
REFERENCES
■
(1) (a) Wyatt, P.; Warren, S. Organic Syntheis: Strategy and Control;
John Wiley and Sons: Chichester, 2007. (b) Carey, F. A.; Sundberg, R. J.
Advanced Organic Chemistry Parts A and B, 5th ed.; Springer: New York,
2007.
(2) For example, see: (a) Alkylation: Stoltz, B. M.; Bennett, N. B.;
Duquette, D. C.; Goldberg, A. F. G.; Liu, Y.; Loewinger, M. B.; Reeves,
C. M. Alkylations of Enols and Enolates. In Comprehensive Organic
Synthesis II, 2nd ed.; Knochel, P., Ed.; Elsevier: Amsterdam, 2014; pp 1−
55. (b) Additon to carbonyl compounds: Kobayashi, S.; Yoo, W. J.;
Yamashita, Y. C-C Bond Formation using Lewis Acids and Silicon
Enolates. Comprehensive Chirality; Carreira, E. M., Yamamoto, H., Eds.;
Elsevier: Amsterdam, 2012; pp 168−197. (c) Cα-Hetero-atom bond
formation: Chen, B.-C.; Zhou, P.; Davis, F. A.; Ciganek, E. α-
Hydroxylation of Enolates and Silyl Enol Ethers. Organic Reactions; John
Wiley: Hoboken, NJ, 2004; Vol. 62, pp 1−356. (d) Smith, A. M. R.; Hii,
K. K. Chem. Rev. 2011, 111, 1637. (e) Aromatic substitution:
RajanBabu, T. V.; Reddy, G. S.; Fukunaga, T. J. Am. Chem. Soc. 1985,
107, 5473. (f) Ir-Catalyzed allylation: Graening, T.; Hartwig, J. F. J. Am.
Chem. Soc. 2005, 127, 17192. Catalyzed addition to alkynes: (g) Brazeau,
J.-F.; Zhang, S.; Colomer, I.; Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc.
2012, 134, 2742.
(3) Westmeier, J.; Pfaff, C.; Siewert, J.; von Zezschwitz, P. Adv. Synth.
Catal. 2013, 355, 2651. For another example of a β-vinylation of an
acyclic enone using a vinylboronate nucleophile giving low selectivity
(42% ee), see: Duursma, A.; Boiteau, J. G.; Lefort, L.; Boogers, J. A. F.;
de Vries, A. H. M.; de Vries, J. G.; Minnaard, A. J.; Feringa, B. L. J. Org.
Chem. 2004, 69, 8045.
(4) (a) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2007, 129, 4908.
(b) Okamoto, K.; Hayashi, T.; Rawal, V. H. Org. Lett. 2008, 10, 4387.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX