phenyl at C-3, which causes a stabilization of the negative
charge in the anion in position 3. Therefore, we assume that
(R)-3b‚2 has a η3-structure (see Scheme 4) either in the
ground state or its involvement in a rapid equilibration. It
has been demonstrated for the related lithium-(-)-sparteine
complexes 1213 and 1314,15 (Figure 4) that these have a η3-
Table 2. Prepared Homoaldol Products anti-11
c
RCHdO
product
yield
% ee
[R]D
CH3(CH2)2CHdO
(CH3)2CHCHdO
(CH3)3CCHdO
cC6H11CHdO
anti-11a
anti-11b
anti-11c
anti-11d
anti-11e
98
95
98
93
99
91a
94a
-144
-162
-181
-113
-64
95a
97a
4-Br(C6H4)CHdO
g95b
1
a Determined by chiral HPLC. b Determined by H NMR shift experi-
ments. c c ) 0.78-1.8, CHCl3.
addition reactions toward carbonyl compounds, opposite to
compound (R)-3a‚2. What are the reasons? Compound (R)-
3b‚2 differs from (R)-3a‚2 in the exchange of methyl for
Figure 4. Structures of complexes 12 13 and 13,14,15 elucidated by
X-ray analysis.
(12) X-ray crystal structure analysis of 9a: formula C22H39NO2Si2, MW
) 405.72, colorless crystal 0.40 × 0.25 × 0.20 mm3, a ) 21.838(1),
structure (at least in solid state) and that they react with
aldehydes, ketones, and acid chlorides in a strict suprafacial
manner.13,15 Obviously, the lithium cation here has a higher
Lewis acidity toward carbonyl groups than in the appropriate
η1-complexes and, thus, “lures” the carbonyl compound to
enter from the same face of the allylic system.
After desilylation (H for Me3Si in 9, ent-9 or anti-11),
highly enantioenriched products that derive from the homo-
enolate of 3-phenyl-2-propenal are accessible;15 the direct
carbamate-type homoenolate reagent had turned out not to
be configurationally stable.16 Furthermore, in many cases,
both enantiomers can be selectively approached via the same
intermediate 3b‚2 or by utilization of a surrogate, recently
introduced by O’Brien and co-workers.17
b ) 9.844(2), c ) 12.235(1) Å, V ) 2630.2(6) Å3, Fcalc ) 1.025 g cm-3
,
µ ) 13.27 cm-1, empirical absorption correction via ψ scan data (0.619 e
T e 0.777), Z ) 4, orthorhombic, space group Pna21 (No. 33), λ ) 1.54178
Å, T ) 223 K, ω/2θ scans, 2810 reflections collected (-h, -k, -l), [(sin θ)/
λ] ) 0.62 Å-1, 2810 independent and 2370 observed reflections [I g 2σ-
(I)], 254 refined parameters, R ) 0.052, wR2 ) 0.140, Flack parameter
0.01(5), max residual electron density 0.27 (-0.27) e Å-3, hydrogens
calculated and refined as riding atoms. X-ray crystal structure analysis of
9c: formula C37H45NO2SiSn, MW ) 682.52, colorless crystal 0.30 × 0.20
× 0.15 mm3, a ) 9.245(1), b ) 11.945(1), c ) 32.509(1) Å, V ) 3590.0-
(5) Å3, Fcalc ) 1.263 g cm-3, µ ) 7.75 cm-1, empirical absorption correction
(0.801 e T e 0.893), Z ) 4, orthorhombic, space group P212121 (No. 19),
λ ) 0.71073 Å, T ) 198 K, ω and æ scans, 11789 reflections collected
((h, (k, (l), [(sin θ)/λ] ) 0.67 Å-1, 7633 independent (Rint ) 0.031) and
5703 observed reflections [I g 2σ(I)], 386 refined parameters, R ) 0.040,
wR2 ) 0.061, Flack parameter -0.05(2), max. residual electron density
0.48 (-0.46) e Å-3, hydrogens calculated and refined as riding atoms. X-ray
crystal structure analysis of ent-9e: formula C24H39NO3Si, MW ) 417.65,
colourless crystal 0.35 × 0.20 × 0.20 mm3, a ) 9.895(1), b ) 11.670(1),
c ) 22.943(1) Å, V ) 2649.3(4) Å3, Fcalc ) 1.047 g cm-3, µ ) 1.10 cm-1
,
Acknowledgment. Support provided by the Deutsche
Forschungsgemeinschaft, Sonderforschungsbereich 424 and
by the Fonds der Chemischen Industrie is gratefully ac-
knowledged. We thank Mrs. Cornelia Weitkamp for her
outstanding experimental assistance.
empirical absorption correction (0.963 e T e 0.978), Z ) 4, orthorhombic,
space group P212121 (No. 19), λ ) 0.71073 Å, T ) 198 K, ω and æ scans,
20230 reflections collected ((h, (k, (l), [(sin θ)/λ] ) 0.66 Å-1, 6233
independent (Rint ) 0.067) and 4461 observed reflections [I g 2σ(I)], 274
refined parameters, R ) 0.047, wR2 ) 0.105, Flack parameter -0.08(12),
max. residual electron density 0.22 (-0.18) e Å-3, hydrogens calculated
and refined as riding atoms. Data sets were collected with Enraf-Nonius
CAD4 and Nonius KappaCCD diffractometers, the later equipped with a
rotating anode generator Nonius FR591. Programs used: data collection
EXPRESS (Nonius B.V., 1994) and COLLECT (Nonius B. V., 1998), data
reduction MolEN (Fair, K. Enraf-Nonius B.V., 1990) and Denzo-SMN
(Otwinowski, Z.; Minor, W. Methods in Enzymology, 1997, 276, 307-
326), absorption correction for CCD data SORTAV (Blessing, R. H. Acta
Crystallogr. 1995, A51, 33-37; J. Appl. Crystallogr. 1997, 30, 421-426),
structure solution SHELXS-97 (Sheldrick, G. M. Acta Crystallogr. 1990,
A46, 467-473), structure refinement SHELXL-97 (Sheldrick, G. M.
Universita¨t Go¨ttingen, 1997), graphics Diamond (Brandenburg, K. Univer-
sita¨t Bonn, 1997).
Supporting Information Available: Experimental pro-
1
cedures, spectroscopic data, and H and 13C NMR spectra
for 1a, 1b, 4a, anti-6a, ent-9e, anti-11b. This material is
OL0364677
(15) (a) Beak, P.; Weisenburger, G. A.; Faibish, N. C.; Pippel, D. J. J.
Am. Chem. Soc. 1999, 121, 9522. (b) Beak, P.; Whisler, M. C.; Vaillancourt,
L. Org. Lett. 2000, 2, 2655.
(13) Hoppe, D.; Hoppe, I.; Marsch, M.; Harms, K.; Boche, G. Angew.
Chem. 1995, 107, 2328; Angew. Chem., Int. Ed. Engl. 1995, 34, 2158.
(14) Beak, P.; Pippel, D. J.; Weisenburger, G. A.; Wilson, S. R. Angew.
Chem. 1998, 110, 2600; Angew. Chem., Int. Ed. Engl. 1998, 37, 2522.
(16) Hoppe, D.; Behrens, K.; Fro¨hlich, R.; Meyer, O. Eur. J. Org. Chem.
1998, 2397, 7.
(17) O’Brien, P.; Dearden, M. J.; Firkin, C. R.; Nermet, J.-P. R.; J. Am.
Chem. Soc. 2002, 124, 11870.
786
Org. Lett., Vol. 6, No. 5, 2004