278
M. Adinolfi et al.
LETTER
Carbohydr. Res. 1988, 183, 71. (e) Sato, S.; Ito, Y.; Ogawa,
T. Tetrahedron Lett. 1988, 29, 5267. (f) Classon, B.;
Garegg, P. J.; Helland, A.-C. J. Carbohydr. Chem. 1989, 8,
543. (g) Nillsson, M.; Norberg, T. J. Carbohydr. Chem.
1989, 8, 613. (h) Nicolaou, K. C.; Hummel, C. W.;
Bockovich, N. J.; Wong, C. H. J. Chem. Soc., Chem.
Commun. 1991, 870. (i) Toepfer, A.; Schmidt, R. R.
Tetrahedron Lett. 1992, 33, 5161. (j) Nicolaou, K. C.;
Bockovich, N. J.; Carcanague, D. R. J. Am. Chem. Soc.
1993, 115, 8843. (k) Numomura, S.; Iida, M.; Numata, M.;
Sugimoto, M.; Ogawa, T. Carbohydr. Res. 1994, 263, C1.
(l) vom de Brook, K.; Kunz, H. Angew. Chem., Int. Ed. Engl.
1994, 33, 101. (m) Jain, R. K.; Vig, R.; Locke, R. D.;
Mohammad, A.; Matta, K. L. Chem. Commun. 1996, 65.
(n) Yan, L.; Kahne, D. J. Am. Chem. Soc. 1996, 118, 9239.
(o) Hummel, G.; Schmidt, R. R. Tetrahedron Lett. 1997, 38,
1173. (p) Figueroa-Perez, S.; Verez-Bencomo, V.
temperature was left to rise spontaneously. After complete
consumption of the donor (24–36 h), the mixture was filtered
through a cotton pad and concentrated. The residue was
purified by silica gel chromatography (eluent: hexane/
EtOAc mixtures).
(17) All compounds were identified by 1H NMR and 13C NMR
analyses. Spectroscopic selected data of representative
compounds are reported. Compound 15: 1H NMR (300
MHz, CDCl3): d = 7.50–7.20 (aromatic protons), 5.10 (1 H,
d, J1,2 = 3.9 Hz, H-1 Fuc), 5.07 (1 H, d, J1,2 = 8.2 Hz, H-1
GlcN), 5.03 (1 H, dd, J1,2 = 7.4 Hz, J2,3 = 10.2 Hz, H-2 Gal),
4.62 (1 H, d, H-1 Gal), 4.90–4.34 (17 H, Troc CH2,
7 × benzyl CH2 and H-5 Fuc), 4.18 (1 H, t, J2,3 = J3,4 = 9.6
Hz, H-3 GlcN), 4.04–3.26 (12 H, H-3 Gal, H-4 Gal, H-5 Gal,
H2-6 Gal, H-4 GlcN, H-5 GlcN, H2-6 GlcN, H-2 Fuc, H-3
Fuc, and H-4 Fuc), 3.81 (3 H, s, -OCH3), 3.03 (1 H, m, H-2
GlcN), 1.13 (3 H, d, J5,6 = 6.2 Hz, H3-6 Fuc), 0.86 [9 H, s, -
SiC(CH3)3], 0.08 and 0.03 [6 H, 2 × s, -Si(CH3)2]. 13C NMR
(50 MHz, CDCl3): d = 155.0 and 153.4 (-NH-CO-
Tetrahedron Lett. 1998, 39, 9143. (q) Ellervik, U.;
Magnusson, G. J. Org. Chem. 1998, 63, 9314. (r) Gege, C.;
Vogel, J.; Bendas, G.; Rothe, U.; Schmidt, R. R. Chem.–Eur.
J. 2000, 6, 111. (s) Gege, C.; Oscarson, S.; Schmidt, R. R.
Tetrahedron Lett. 2001, 42, 377. (t) Majumdar, D.; Zhu, T.;
Boons, G.-J. Org. Lett. 2003, 5, 3591.
OCH2CCl3, -O-CO-OMe), 139.3, 139.2, 138.8, 138.6,
138.4, 137.9, and 137.8 (aromatic C), 128.8–127.0 (aromatic
CH), 99.5, 97.3, and 94.4 (C-1 Gal, GlcN, Fuc), 95.1 (-NH-
CO-OCH2CCl3), 55.0 (-OCH3), 25.6 [-SiC(CH3)3], 17.9 [-
SiC(CH3)3], 16.2 (C-6 Fuc), –4.2 and –5.3 [-Si(CH3)2]; other
signals at d = 80.9, 79.6, 78.8, 76.6, 76.0, 75.4, 75.0, 74.7,
73.8, 73.4, 73.2, 72.8, 72.4, 72.3, 68.2, 67.6, 66.4, 61.8.
Compound 16: 1H NMR (400 MHz, CDCl3): d = 7.40–7.15
(aromatic protons), 5.27 (1 H, dd, J2,3 = 10.4 Hz, J3,4 = 3.2
Hz, H-3 Fuc), 5.21 (1 H, bd, H-4 Fuc), 5.15 (1 H, d, J1,2 = 3.6
Hz, H-1 Fuc), 5.11 (1 H, d, J1,2 = 7.8 Hz, H-1 GlcN), 5.00–
4.96 (2 H, m, H-2 Gal and H-5 Fuc), 4.59 (1 H, d, J1,2 = 8.0
Hz, H-1 Gal), 4.72–4.40 (12 H, Troc CH2, 5 × benzyl CH2),
4.20 (1 H, t, J2,3 = J3,4 = 9.4 Hz, H-3 GlcN), 3.98–3.28 (10 H,
H-3 Gal, H-4 Gal, H-5 Gal, H2-6 Gal, H-4 GlcN, H-5 GlcN,
H2-6 GlcN, and H-2 Fuc), 3.78 (3 H, s, -OCH3), 2.91 (1 H,
m, H-2 GlcN), 2.09 and 1.98 (6 H, 2 × s, 2 × acetyl CH3),
0.93 (3 H, d, J5,6 = 6.2 Hz, H3-6 Fuc), 0.84 [9 H, s, -
SiC(CH3)3], 0.06 and 0.01 [6 H, 2 × s, -Si(CH3)2]. 13C NMR
(50 MHz, CDCl3): d = 170.4 and 169.4 (2 × -COCH3), 155.1
and 154.0 (-NH-CO-CH2CCl3, -O-CO-OMe), 138.6, 138.3,
138.3, 138.1, and 138.1 (aromatic C), 129.0–127.2 (aromatic
CH), 99.4, 97.5, 93.9 (C-1 Gal, GlcN, and Fuc), 55.0 (-
OCH3), 25.6 [-SiC(CH3)3], 20.9 and 20.7 (2 × -COCH3),
17.9 [-SiC(CH3)3], 15.2 (C-6 Fuc), –4.2 and –5.3 [-
(14) Tanaka, H.; Amaya, T.; Takahashi, T. Tetrahedron Lett.
2003, 44, 3053.
(15) Procedure A: A mixture of acceptor (0.2 mmol) and donor
1 (see Table 1 for relative amounts) were coevaporated three
times in anhyd toluene and the residue was kept under
vacuum for 1 h. Acid washed molecular sieves (4 Å AW 300
MS, pellets, 200 mg) were then added and the mixture was
dissolved at 0 °C with CH2Cl2 (2.8 mL), and Et2O (700 mL).
After cooling at –30 °C, a solution of Yb(OTf)3 (12.5 mg,
0.02 mmol) in dioxane (700 mL) was added drop-wise. The
mixture was kept under stirring at this temperature until
complete consumption of the fucosyl donor (1–3 h, TLC)
and then few drops of Et3N were added. The mixture was
filtered on a short pad of silica gel, concentrated, and the
residue purified by silica gel chromatography (eluent:
hexane/EtOAc mixtures).
(16) Procedure B: A mixture of acceptor (0.2 mmol) and donor
2 (see Table 1 for relative amounts) were coevaporated three
times in anhyd toluene and the residue was kept under
vacuum for 1 h. Acid washed molecular sieves (4 Å AW 300
MS, pellets, 1.5–2 g) were then added and the solvent
(dichloroethane or toluene, 2–4 mL) was added at 0 °C. The
mixture was kept at 0 °C under stirring for 30 min and then
Si(CH3)2]; other signals at d = 80.5, 74.8, 74.6, 74.4, 73.6,
73.2, 73.1, 72.3, 72.0, 71.8, 70.3, 67.9, 67.8, 64.5, 61.8.
Synlett 2004, No. 2, 275–278 © Thieme Stuttgart · New York