C. A. James et al. / Tetrahedron Letters 47 (2006) 511–514
513
11. A Chemical Abstracts search found only five com-
pounds; (a) Suda, Y.; Onikubo, S. Jpn. Kokai Tokkyo
Koho, JP 2002060742 A2, 2002; Chem. Abstr. 2002, 136,
207495; (b) Okutsu, S.; Onikubo, S.; Tamano, M.;
Enokida, T.; Jpn. Kokai Tokkyo Koho, JP 10152676
A2, 1998; Chem. Abstr. 1998, 129, 47261; (c) Yumoto, M.;
Yagihara, N.; Fujimori, J.; Jpn. Kokai Tokkyo Koho, JP
10020495 A2, 1998; Chem. Abstr. 1998, 128, 174182; (d)
Abdel-Hamid, A. A.; Fahmy, A. F. A.; Shiba, S. A.; El-
Hawary, N. A. Egypt. J. Chem. 1995, 36, 363; Chem.
Abstr. 1995, 124, 117240.
procedure for the conversion of acylhydrazides to 1,3,4-
oxadiazoles has also been demonstrated. The latter
approach is potentially amenable to parallel synthesis
strategies for the production of a wide variety of func-
tionalized 1,3,4-oxadiazoles, given the large number of
monoacylhydrazides, which are commercially available
and the mild conditions used for effecting the key cycli-
zation step.
12. (a) Nair, V.; Nair, J. S.; Vinod, A. U. Synthesis 2000, 1713;
(b) Valentine, D. H., Jr.; Hillhouse, J. H. Synthesis 2003,
317; (c) Yang, Y.-H.; Shi, M. J. Org. Chem. 2005, 70, 8645.
13. Mazurkiewicz, R.; Grymel, M. Polish J. Chem. 1997, 71,
77; For one example using similar conditions, see: Brown,
P.; Best, D. J.; Broom, N. J. P.; Cassels, R.; OꢀHanlon, P.
J.; Mitchell, T. J.; Osborne, N. F.; Wilson, J. M. J. Med.
Chem. 1997, 40, 2563.
References and notes
1. For example, see: (a) Tully, W. R.; Gardner, C. R.;
Gillespie, R. J.; Westwood, R. J. J. Med. Chem. 1991, 34,
2060; (b) Chen, C.; Senanayake, C. H.; Bill, T. J.; Larsen,
R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1994,
59, 3738; (c) Saunders, J.; Cassidy, M.; Freedmen, S. B.;
Harley, E. A.; Iversen, L. L.; Kneen, C.; MacLeod, A. M.;
Merchant, K. J.; Snow, R. J.; Baker, R. J. Med. Chem.
1990, 33, 1128; (d) Omar, F. A.; Mahfouz, N. M.;
Rahman, M. A. Eur. J. Med. Chem. 1996, 37, 2421.
2. For examples of 1,3,4-oxadiazole synthesis from silylated
diacylhydrazines, see: (a) Rigo, B.; Fassuer, D.; Cauliez,
P.; Couturier, D. Synth. Commun. 1989, 19, 2321; (b)
Rigo, B.; Cauliez, P.; Fasseur, D.; Couturier, D. Synth.
Commun. 1988, 18, 1247; For cyclizations using chlor-
amine T, see: (c) Singh, S. P.; Naithani, R.; Batra, H.;
Prakash, O.; Sharma, D. Indian J. Heterocycl. Chem. 1998,
8, 103; (d) Jedlovska, E.; Lesko, J. Synth. Commun. 1994,
24, 1879; For an example using the aza-Wittig reaction,
see: (e) Froeyen, P. Phosphorus, Sulfur Silicon Relat. Elem.
1991, 57, 11; For an example using PbO2, see: (f) Milcent,
R.; Barbier, G. J. Heterocycl. Chem. 1983, 20, 77; For
iodosobenzene diacetate-mediated synthesis of diacylhydr-
azines, see: (g) Singh, S. P.; Batra, H.; Sharma, P. K. J.
Chem. Res. Syn. 1997, 12, 468; For palladium (0)-
catalyzed cyclization, see: (h) Lutun, S.; Hasiak, B.;
Couturier, D. Synth. Commun. 1999, 29, 111; For a
method using 2-chloro-1,3-dimethylimidazolinium chlo-
ride, see: (i) Isobe, T.; Ishikawa, T. J. Org. Chem. 1999, 64,
6989; For a method using BF3ÆEt2O see: (j) Tandon, V. K.;
Chhor, R. B. Synth. Commun. 1999, 31, 1727; For a
method using microwave assistance see: (k) Natero, R.;
Koltun, D. O.; Zablocki, J. A. Synth. Commun. 2004, 34,
2523; For ZrCl4 catalyzed cyclization see: (l) Sharma, G.
V. M.; Begum, A.; Krishna, P. R. Synth. Commun. 2004,
34, 2387; For the synthesis of haloalkyl-1,3,4-oxadiazoles
from cyclopropyldiacylhydrazides see: (m) Yang, Y.-H.;
Shi, M. Tetrahedron Lett. 2005, 46, 6285.
3. (a) Hamad, A.-S. S.; Hashem, H. I. J. Heterocycl. Chem.
2002, 39, 1325; (b) Kerr, V. N.; Ott, D. G.; Hayes, F. N. J.
Am. Chem. Soc. 1960, 82, 186.
4. (a) Borg, S.; Vollinga, R. C.; Labarre, M.; Payza, K.;
Terenius, L.; Luthman, K. J. Med. Chem. 1999, 42, 4331;
(b) Klingsberg, E. J. Am. Chem. Soc. 1958, 80, 5786.
5. Carlsen, P. H. J.; Jorgensen, K. B. J. Heterocycl. Chem.
1994, 31, 805.
6. Short, F. W.; Long, L. N. J. Heterocycl. Chem. 1969, 6, 7.
7. Reddy, C. K.; Reddy, P. S. N.; Ratnam, C. V. Synthesis
1983, 842.
8. Spiros, L.; Allen, M. P.; Segelstein, B. E. Synth. Commun.
2000, 30, 437.
9. Rigo, B.; Cauliez, P. Synth. Commun. 1986, 16, 1665.
10. (a) Brain, C. T.; Paul, J. M.; Loong, Y.; Oakley, P. J.
Tetrahedron Lett. 1999, 40, 3275; (b) Brain, C. T.;
Brunton, S. A. Synlett 2001, 382; (c) Brown, B.; Clemens,
I.; Neesom, J. K. Synlett 2000, 131; (d) Huang, X.; Zhu,
Q. J. Chem. Res. Syn. 2000, 300.
14. Kosˇmrlj, J.; Kocˇevar, M.; Polanc, S. Synlett 1996, 7,
652.
15. The diacylhydrazides were prepared either by coupling of
the acid corresponding to 3, with an excess of the
appropriate hydrazide (AcNHNH2, HCONHNH2, or
MeOCONHNH2) in the presence of EDCI/HOBt in
DMF, or by acylation of 3 with the corresponding acid
chloride in H2O/dioxane (1:1) and Na2CO3 as base. The
latter procedure is exemplified by the preparation of 2b:
To a solution of 3 (0.220 g, 0.66 mmol) in dioxane/water
(1:1, 4 mL) was added Na2CO3 (0.07 g, 0.66 mmol) and
the solution was cooled to 0 ꢁC. Bromoacetyl bromide
(0.055 mL, 0.63 mmol) was added slowly. The mixture was
allowed to stir at 0 ꢁC for 1 h and was then quenched with
satd NH4Cl and extracted with EtOAc (·3). The combined
organic layers were washed (H2O, brine), dried (Na2SO4),
and concentrated in vacuo to afford diacyl hydrazide 2b
(0.209 mg, 70%), which was of sufficient purity for use in
1
the following step. H NMR (400 MHz, CDCl3) d 7.33–
7.40 (m, 3H), 7.21–7.24 (m, 2H), 4.09 (s, 2H), 3.16 (t,
J = 5.7 Hz, 2H), 3.38 (t, J = 5.7 Hz, 2H), 2.87 (t,
J = 5.7 Hz, 2H), 2.17 (t, J = 5.7 Hz, 2H), 1.45 (s, 9H).
LCMS m/e 452 (M+H)+. Monoacylhydrazide 3 was
prepared by EDCI/HOBt coupling of the corresponding
acid with an excess of hydrazine monohydrate.
16. Representative procedure for the cyclization of diacylhyd-
razides: To a suspension of diacylhydrazide 2f (0.106 g,
0.294 mmol) in CH3CN (2 mL) was added i-Pr2NEt
(0.30 mL, 1.7 mmol) and PPh3 (0.137 g, 0.523 mmol),
followed after 5 min by hexachloroethane (0.092 mg,
0.389 mmol). After stirring the mixture at room temper-
ature for 4 h the solvent was removed in vacuo and the
residue partitioned with H2O/EtOAc. The organic phase
was separated and the aqueous phase was re-extracted
with EtOAc. The combined organic phases were washed
(H2O, brine), dried (Na2SO4) and evaporated, and the
residue was purified by preparative HPLC to give 1f
1
(0.0504 g, 50%) as a colorless solid: H NMR (400 MHz,
CDCl3) d 8.28 (s, 1H), 7.41–7.36 (m, 3H), 7.18–7.16 (m,
2H), 3.59 (dd, J = 5.6, 5.8 Hz, 2H), 3.43 (dd, J = 5.5,
5.9 Hz, 2H), 2.91 (dd, J = 6.1, 5.5 Hz, 2H), 2.31 (dd,
J = 5.8, 5.5 Hz, 2H), 1.45 (s, 9H). LCMS: m/e 342
(M+H)+.
17. Polanc has demonstrated a similar one-pot protocol for a
limited number of substrates starting from monoacylhyd-
razides and isocyanates to give 2-amino-1,3,4-oxadiazoles
(see Ref. 14).
18. Representative procedure for the one-pot acylation/cycli-
zation: To a solution of hydrazide 3 (1.00 g, 3.02 mmol)
and i-Pr2NEt (3.62 mL, 20.8 mmol) in CH3CN (20 mL)