LETTER
Stereoselective Synthesis of b-Unsubstituted (Z)-g-Alkylidenebutenolides
221
(8) Vaz, B.; Alvarez, R.; Brückner, R.; de Lera, A. R. Org. Lett.
2005, 7, 545.
1) AcOH–H2O (1:1)
r.t., 48 h (98%)
O
O
O
O
(9) (a) Boukouvalas, J.; Maltais, F.; Lachance, N. Tetrahedron
Lett. 1994, 35, 7897. (b) Boukouvalas, J.; Lachance, N.;
Ouellet, M.; Trudeau, M. Tetrahedron Lett. 1998, 39, 7665.
(10) For recent synthetic applications, see: (a) Bellina, F.;
Anselmi, C.; Viel, S.; Mannina, L.; Rossi, R. Tetrahedron
2001, 57, 9997. (b) Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.;
Yang, Z. J. Org. Chem. 2003, 68, 670. (c) Bellina, F.;
Anselmi, C.; Martina, F.; Rossi, R. Eur. J. Org. Chem. 2003,
2290. (d) Boukouvalas, J.; Pouliot, M. Synlett 2005, 343.
(11) In the absence of a b-substituent, stereoselectivities can vary
both in magnitude and direction: (a) Takayama, H.;
Kuwajima, T.; Kitajima, M.; Nonato, M. G.; Aimi, N.
Heterocycles 1999, 50, 75. (b) Takayama, H.; Ichikawa, T.;
Kuwajima, T.; Kitajima, M.; Seki, H.; Aimi, N.; Nonato, M.
G. J. Am. Chem. Soc. 2000, 122, 8635. (c) Barbosa, L. C.
A.; Demuner, A. J.; de Alvarenga, E. S.; Oliveira, A.; King-
Diaz, B.; Lotina-Hennsen, B. Pest Manag. Sci. 2006, 62,
214.
2) PhCOCl, py, 0 °C
72 h (62%)
12e
2
O
OH
O
PhCOO
Scheme 3
own right since they can be transformed to a range of
b-substituted homologues by cross-coupling reac-
tions,7a,9b,22 and also due to the recent discovery that cer-
tain members of this class are potent quorum sensing (QS)
inhibitors23 with potential utility for the treatment of an-
thrax and other bacterial infections.24 Such applications
are under study and the results will be reported in due
course.
(12) Bromine has previously performed this role in CBS-
reduction and TADA reactions: (a) Nicolaou, K. C.;
Bertinato, A. D.; Piscopio, A. D.; Chakraborty, T. K.;
Minowa, N. Chem. Commun. 1993, 619. (b) He, F.; Bo, Y.;
Altom, J. D.; Corey, E. J. J. Am. Chem. Soc. 1999, 121,
6771. (c) Parker, K. A.; Fokas, D. J. Org. Chem. 2006, 71,
449. (d) Frank, S. A.; Roush, W. R. J. Org. Chem. 2002, 67,
4316.
Acknowledgment
We thank the Natural Sciences and Engineering Research Council
of Canada (NSERC), Merck Frosst Canada and Eisai Research In-
stitute (Andover, MA, USA) for financial support. We also thank
NSERC for postgraduate scholarships to N.L., S.C. and M.P.
References and Notes
(13) Jas, G. Synthesis 1991, 965.
(14) (a) López, C. S.; Álvarez, R.; Vaz, B.; Faza, O. N.; de Lera,
R. J. Org. Chem. 2005, 70, 3654. (b) Boeckman, R. K. Jr.;
Pero, J. E.; Boehmler, D. J. J. Am. Chem. Soc. 2006, 128,
11032.
(15) The major isomers (syn) of all aldol products described
herein (5 and 10a–d) were clearly distinguished from their
anti counterparts by the upfield shift of their g-proton
(Dd ≈ 0.2–0.3 ppm). Their stereochemistry was deduced by
debromination of syn-10a/anti-10a to the corresponding
butenolides syn-13a/anti-13a whose stereostructures were
unambiguously assigned from the diagnostic shift of the b-
proton5a (Scheme 4).
(1) Reviews on the synthesis of g-alkylidenebutenolides:
(a) Negishi, E.; Kotora, M. Tetrahedron 1997, 53, 6707.
(b) Brückner, R. Chem. Commun. 2001, 141. (c) Brückner,
R. Curr. Org. Chem. 2001, 5, 679. (d) Rossi, R.; Bellina, F.
In Targets in Heterocyclic Systems: Chemistry and
Properties, Vol. 5; Attanasi, O. A.; Spinelli, D., Eds.;
Società Chimica Italiana: Roma, 2002, 169–198.
(2) For more recent work, see: (a) Anastasia, L.; Xu, C.;
Negishi, E. Tetrahedron Lett. 2002, 43, 5673. (b) Rousset,
S.; Abarbri, M.; Thibonnet, J.; Parrain, J.-L.; Duchêne, A.
Tetrahedron Lett. 2003, 44, 7633. (c) Olpp, T.; Brückner, R.
Angew. Chem. Int. Ed. 2005, 44, 1553. (d) Takayama, H.;
Sudo, R.; Kitajima, M. Tetrahedron Lett. 2005, 46, 5795.
(e) Doroh, B.; Sulikowski, G. A. Org. Lett. 2006, 8, 903.
(f) Albrecht, U.; Nguyen, V. T. H.; Langer, P. Synthesis
2006, 1111. (g) Olpp, T.; Brückner, R. Angew. Chem. Int.
Ed. 2006, 45, 4023.
Br
Br
+
Bu
Bu
O
O
O
O
H
H
HO
HO
syn-10a
anti-10a
(3) Natural melodorinol consists of a ca. 2.5:1 mixture of the R
and S enantiomers: (a) Lu, X.; Chen, G.; Xia, L.; Guo, G.
Tetrahedron: Asymmetry 1997, 8, 3067. (b) See also:
Pohmakort, M.; Tuchinda, P.; Premkaisorn, P.;
(5:1)
δ 4.88
δ 5.12
Bu3SnH, (Ph3P)4Pd
(82%)
Limpongpan, A.; Reutrakul, V. Heterocycles 1999, 51, 795.
(4) Synthesis of xerulin and its relatives: (a) Siegel, K.;
Brückner, R. Synlett 1999, 1227. (b) Negishi, E.;
δ 7.47
δ 7.55
H
H
+
Bu
Bu
O
O
O
O
Alimardanov, A.; Xu, C. Org. Lett. 2000, 2, 65. (c) Rossi,
R.; Belina, F.; Catanese, A.; Mannina, L.; Valensin, D.
Tetrahedron 2000, 56, 479. (d) Sorg, A.; Siegel, K.;
Brückner, R. Chem. Eur. J. 2005, 11, 1610.
H
H
HO
HO
syn-13a
(5:1)
anti-13a
Scheme 4
(5) (a) Hjelmgaard, T.; Persson, T.; Rasmussen, T. B.; Givskov,
M.; Nielsen, J. Bioorg. Med. Chem. 2003, 11, 3261.
(b) Piper, S.; Risch, N. ARKIVOC 2003, (i), 86.
(6) High Z-selectivity has been obtained in some cases under
equilibration conditions: (a) Pohmakort, M.; Tuchinda, P.;
Premkaisorn, P.; Reutrakul, V. Tetrahedron 1998, 54,
11297. (b) Sundar, N.; Kundu, M. K.; Reddy, P. V.;
Mahendra, G.; Bhat, S. V. Synth. Commun. 2002, 32, 1881.
(7) (a) Sorg, A.; Siegel, K.; Brückner, R. Synlett 2004, 321.
(b) Sorg, A.; Blank, F.; Brückner, R. Synlett 2005, 1286.
(16) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org.
Chem. 1998, 63, 8965.
(17) Typical Procedure: To a solution of 813 (147 mg, 0. 903
mmol) in anhyd CH2Cl2 (3 mL) at 0 °C were successively
added TBSOTf (207 mL, 0. 903 mmol) and Et3N (125 mL,
0. 903 mmol). The mixture was stirred for 30 min at 0 °C,
then cooled to –78 °C, and then p-anisaldehyde (100 mL,
0.821 mmol) was added. After stirring at –78 °C for 1 h,
Synlett 2007, No. 2, 219–222 © Thieme Stuttgart · New York