1174
A. Srikrishna, B. V. Lakshmi
LETTER
aldehyde 16. Finally, Wolff–Kishner reduction of the al- ploited for the generation of the two vicinal quaternary
dehyde 16 with hydrazine hydrate, diethylene glycol carbon atoms, and an efficient RCM reaction for the
(digol) and potassium hydroxide at 190 °C furnished the generation of the cyclopentene ring. Extension of this
methyl ether 17 of a-herbertenol 1b, which exhibited methodology for the enantioselective synthesis of these
spectral data identical to that of an authentic sample.4e sesquiterpenoids is currently under progress.
Since the ester 14 and the ether 17 have already been con-
verted into herbertene-1,13-diol 3 and a-herbertenol 1b,
respectively, the present sequence constitutes formal total
Acknowledgment
We thank Prof. Asakawa for providing the copies of the spectra of
natural herbertene-1,13-diol and a-herbertenols, and the Council of
Scientific and Industrial Research, New Delhi for the financial
support and a fellowship to BVL.
synthesis of these herbertenoids.
MeO
O
MeO
MeO
MeO
O
OR
b
a
70%
85%
References
6
7
8 R = Me
10 R = H
c 95%
(1) Irita, H.; Hashimoto, T.; Fukuyama, Y.; Asakawa, Y.
Phytochemistry 2000, 55, 247.
92%
d
(2) (a) Matsuo, A.; Yuki, S.; Nakayama, M. J. Chem. Soc.,
Chem. Commun. 1981, 864. (b) Matsuo, A.; Yuki, S.;
Nakayama, M.; Hayashi, S. Chem. Lett. 1982, 463.
(c) Asakawa, Y.; Matsuda, R.; Schofield, W. B.; Gradstein,
S. R. Phytochemistry 1982, 21, 2471. (d) Matsuo, A.; Yuki,
S.; Nakayama, M. Chem. Lett. 1983, 1041. (e) Matsuo, A.;
Nakayama, N.; Nakayama, M. Phytochemistry 1985, 24,
777. (f) Matsuo, A.; Yuki, S.; Nakayama, M. J. Chem. Soc.,
Perkin Trans. 1 1986, 701.
O
MeO
MeO
OTMS
e
O
O
77%
11
9
MeO
MeO
(3) (a) Fukuyama, Y.; Kiriyama, Y.; Kodama, M. Tetrahedron
Lett. 1996, 37, 1261. (b) Fukuyama, Y.; Asakawa, Y. J.
Chem. Soc., Perkin Trans. 1 1991, 2737.
(4) (a) Boxall, R. J.; Ferris, L.; Grainger, R. S. Synlett 2004,
2379. (b) Ng, D.; Yang, Z.; Garcia-Garibay, M. A. Org. Lett.
2004, 6, 645. (c) Srikrishna, A.; Satyanarayana, G.
Tetrahedron Lett. 2003, 44, 1027. (d) Srikrishna, A.; Rao,
M. S. Eur. J. Org. Chem. 2004, 499. (e) Srikrishna, A.;
Babu, N. C.; Rao, M. S. Tetrahedron 2004, 60, 2125; and
references cited therein.
(5) (a) Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94,
5897. (b) Ireland, R. E.; Wipf, P.; Armstrong, J. D. J. Org.
Chem. 1991, 56, 650. (c) Gilbert, J. C.; Yin, J.; Fakhreddine,
F. H.; Karpinski, M. L. Tetrahedron 2004, 60, 51.
(6) (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
(b) Fürstner, A. Angew. Chem. Int. Ed. 2000, 39, 3013.
(c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34,
18.
f
98%
COOMe
100%
COOMe
12
13
g
MeO
ref.4c
X
OH
COOMe
97%
3 X = OH
1b X = H
14
h
ref.4e
MeO
j
58%
(7) Achari, B.; Bandyopadhyay, S.; Basu, K.; Pakrashi, S. C.
Tetrahedron 1985, 41, 107.
(8) (a) Schreiber, S. L.; Liew, W.-F. Tetrahedron Lett. 1983, 24,
2363. (b) Criegee, R. Ber. Bunsen-Ges. Phys. Chem. 1944,
77, 722.
(9) Yields refer to isolated and chromatographically pure
compounds. All the compounds exhibited spectral data (IR,
1H NMR and 13C NMR and MS) consistent with their
structures.
R
OMe
17
15 R = CH2OH
16 R = CHO
i
90%
Scheme 1 Reagents and conditions: (a) O3/O2, MeOH–CH2Cl2
(1:9), NaHCO3 (catalytic), –70 °C; Ac2O, Et3N, C6H6, DMAP (cata-
lytic), reflux, 7 h; (b) LDA, THF; CH2=CHCH2Br, –70 °C to r.t., 7 h;
(c) 5% NaOH, MeOH–H2O (1:1), reflux, 7 h; (d) DCC, DMAP (cata-
lytic), Me2C=CHCH2OH, CH2Cl2, r.t., 4 h; (e) i. LDA, THF; TMSCl,
Et3N, –70 °C, 30 min, r.t, 5 h, reflux, 2 h; ii. dil. HCl, 40 min; iii.
CH2N2, Et2O, 0 °C, 30 min; (f) Cl2Ru(PCy3)2=CHPh (5 mol%),
CH2Cl2, 5 h; (g) 10% Pd/C, H2, EtOH, 1 atm., 5 h; (h) LAH, Et2O,
0 °C to r.t., 2 h; (i) PCC, silica gel, CH2Cl2, r.t., 30 min; (j)
NH2NH2·H2O, KOH, digol, 190 °C, 10 h.
Selected Spectral Data.
3-Methylbut-2-enyl 2-(2-methoxy-5-methylphenyl)pent-4-
enoate (9): IR (neat): nmax = 1733 cm–1. 1H NMR (300 MHz,
CDCl3 + CCl4): d = 6.99 (1 H, s), 6.95 (1 H, d, J = 8.2 Hz),
6.69 (1 H, d, J = 8.2 Hz), 5.71 (1 H, ddt, J = 17.1, 10.2, 6.7
Hz), 5.26 (1 H, br t, J = 7.2 Hz), 5.01 (1 H, d, J = 17.1 Hz),
4.93 (1 H, d, J = 10.2 Hz), 4.55 (1 H, dd, J = 12.4, 6.9 Hz),
4.49 (1 H, dd, J = 12.4, 7.2 Hz), 3.97 (1 H, t, J = 8.1 Hz), 3.77
(3 H, s), 2.71 (1 H, dt, J = 14.1, 8.1 Hz), 2.40 (1 H, dt, J =
In conclusion, starting from the allylmethylanisole 6, we
have developed efficient synthesis of ( )-herbetene-1,13-
diol 3 (the ester 14 obtained in 7 steps in an overall yield
of 39.8%) and a-herbertenol 1b (a-herbertenyl methyl
ether 17 obtained in 10 steps in an overall yield of 19.8%).
Ireland ester Claisen rearrangement was strategically ex-
14.1, 6.7 Hz), 2.27 (3 H, s), 1.72 (3 H, s), 1.66 (3 H, s). 13
NMR (75 MHz, CDCl3 + CCl4): d = 173.4 (C), 154.6 (C),
137.9 (C), 136.1 (CH), 129.5 (C), 129.1 (CH), 128.3 (CH),
127.3 (C), 119.3 (CH), 116.4 (CH2), 110.6 (CH), 61.3 (CH2),
C
Synlett 2005, No. 7, 1173–1175 © Thieme Stuttgart · New York