Chemistry of Materials
Article
(50) Richter, C.; Schaepe, K.; Glorius, F.; Ravoo, B. J. Tailor-Made
N-Heterocyclic Carbenes for Nanoparticle Stabilization. Chem.
Commun. 2014, 50, 3204−3207.
Salt: Dimethylpyrrolidinium Thiocyanate. Solid State Ionics 2008, 178,
1798−1803.
(67) Golding, J.; Forsyth, S.; MacFarlane, D. R.; Forsyth, M.;
Deacon, G. B. Methanesulfonate and p-Toluenesulfonate Salts of the
N-Methyl-N-Alkylpyrrolidinium and Quaternary Ammonium Cati-
ons: Novel Low Cost Ionic Liquids. Green Chem. 2002, 4, 223−229.
(68) Cahill, L. S.; Rana, U. A.; Forsyth, M.; Smith, M. E.
Investigation of Proton Dynamics and the Proton Transport Pathway
in Choline Dihydrogen Phosphate Using Solid-State NMR. Phys.
Chem. Chem. Phys. 2010, 12, 5431−5438.
(51) Wang, D.; Richter, C.; Ruhling, A.; Drucker, P.; Siegmund, D.;
̈ ̈
Metzler-Nolte, N.; Glorius, F.; Galla, H.-J. A Remarkably Simple Class
of Imidazolium-Based Lipids and Their Biological Properties.
Chem.Eur. J. 2015, 21, 15123−15126.
(52) Wang, D.; Richter, C.; Ruhling, A.; Huwel, S.; Glorius, F.;
̈ ̈
Galla, H.-J. Anti-Tumor Activity and Cytotoxicity in Vitro of Novel
4,5-Dialkylimidazolium Surfactants. Biochem. Biophys. Res. Commun.
2015, 467, 1033−1038.
(69) Sirota, E. B.; King, H. E.; Singer, D. M.; Shao, H. H. Rotator
Phases of the Normal Alkanes - An X-Ray-Scattering Study. J. Chem.
Phys. 1993, 98, 5809−5824.
(53) Ruhling, A.; Wang, D.; Ernst, J. B.; Wulff, S.; Honeker, R.;
̈
Richter, C.; Ferry, A.; Galla, H.-J.; Glorius, F. Influence of the
Headgroup of Azolium-Based Lipids on Their Biophysical Properties
and Cytotoxicity. Chem.Eur. J. 2017, 23, 5920−5924.
(54) Drucker, P.; Ruhling, A.; Grill, D.; Wang, D.; Draeger, A.;
̈ ̈
́
(70) Barbera, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Breaking the
Mold of Discotic Liquid Crystals. Angew. Chem., Int. Ed. 1998, 37,
296−299.
(71) Basurto, S.; García, S.; Neo, A. G.; Torroba, T.; Marcos, C. F.;
Gerke, V.; Glorius, F.; Galla, H.-J. Imidazolium Salts Mimicking the
Structure of Natural Lipids Exploit Remarkable Properties Forming
Lamellar Phases and Giant Vesicles. Langmuir 2017, 33, 1333−1342.
(55) Goossens, K.; Rakers, L.; Shin, T.; Honeker, R.; Bielawski, C.
W.; Glorius, F. Substituted Azolium Disposition: Examining the
Effects of Alkyl Placement on Thermal Properties. Crystals 2019, 9,
34.
(56) Despite their lower reactivity, 1-bromoalkanes were used
instead of 1-iodoalkanes to facilitate a comparison of the thermal
characteristics of the resulting pentaalkylimidazolium bromide salts to
those of imidazolium bromide derivatives with fewer alkyl chains. The
latter have been more widely studied as compared to the iodide salts,
in part due to the smaller size of the bromide anion as compared to
iodide and due to the higher photostability of bromide salts.
(57) Sakai, T.; Seo, S.; Matsuoka, J.; Mori, Y. Synthesis of
Functionalized Tetracyanocyclopentadienides From Tetracyanothio-
phene and Sulfones. J. Org. Chem. 2013, 78, 10978−10985.
(58) For comparison, long-chain-substituted 1-alkyl-3-methylimida-
zolium bromide ([Cnmim][Br]) and 1,3-dialkylimidazolium bromide
([(Cn)2im][Br]) salts are typically stable monohydrates, even when
exposed to ambient atmospheres. See, for example, refs 23 and 24 in
́
Miguel, D.; Barbera, J.; Ros, M. B.; de la Fuente, M. R. Indene and
Pseudoazulene Discotic Liquid Crystals: A Synthetic and Structural
Study. Chem.Eur. J. 2005, 11, 5362−5376.
(72) See also: Kuhn, N.; Henkel, G.; Kreutzberg, J. Synthese und
Reaktionen von 1,2,4,5-Tetramethylimidazol; die Kristallstruktur von
Pentamethylimidazolium-iodid/Synthesis and Reactions of 1,2,4,5-
Tetramethylimidazole; the Crystal Structure of Pentamethylimidazo-
lium Iodide. Z. Naturforsch., B: J. Chem. Sci. 1991, 46b, 1706−1712.
(73) To the best of our knowledge, only Maeda and co-workers
previously reported ILCs with [Cp(CN)5]− anions and quaternary
ammonium counterions with long alkyl chains, see: Bando, Y.;
Sakurai, T.; Matsuda, W.; Seki, S.; Takaya, H.; Maeda, H. Ion-Pairing
Assemblies Based on Pentacyano-Substituted Cyclopentadienide as a
π-Electronic Anion. Chem.Eur. J. 2016, 22, 7843−7850.
(74) We note that unsolvated Na[Cp(CN)5] also exhibits stacking
of the [Cp(CN)5]− anions in the solid state [Bacsa, J.; Less, R. J.;
Skelton, H. E.; Soracevic, Z.; Steiner, A.; Wilson, T. C.; Wood, P. T.;
Wright, D. S. Assembly of the First Fullerene-Type Metal−Organic
Frameworks Using a Planar Five-Fold Coordination Node. Angew.
Chem., Int. Ed. 2011, 50, 8279−8282], although the compound is a
high-melting, non-mesomorphic solid (Tm = 483 °C, see Figure S24).
(75) Veber, M.; Sotta, P.; Davidson, P.; Levelut, A. M.; Jallabert, C.;
Strzelecka, H. Mesomorphic Properties of Short Chains Substituted
Heteroaromatic Salts. J. Phys. 1990, 51, 1283−1301.
(59) Such an arrangement was previously observed in the solid-state
structure of the non-mesomorphic salt [tropylium][Cp(CN)5], see ref
73.
(76) Timmermans, J. Plastic Crystals: A Historical Review. J. Phys.
Chem. Solids 1961, 18, 1−8.
(77) Yoshio, M.; Mukai, T.; Kanie, K.; Yoshizawa, M.; Ohno, H.;
Kato, T. Layered Ionic Liquids: Anisotropic Ion Conduction in New
Self-Organized Liquid-Crystalline Materials. Adv. Mater. 2002, 14,
351−354.
(78) Ichikawa, T.; Yoshio, M.; Hamasaki, A.; Taguchi, S.; Liu, F.;
Zeng, X.-b.; Ungar, G.; Ohno, H.; Kato, T. Induction of
Thermotropic Bicontinuous Cubic Phases in Liquid-Crystalline
Ammonium and Phosphonium Salts. J. Am. Chem. Soc. 2012, 134,
2634−2643.
(79) MacFarlane, D. R.; Huang, J.; Forsyth, M. Lithium-Doped
Plastic Crystal Electrolytes Exhibiting Fast Ion Conduction for
Secondary Batteries. Nature 1999, 402, 792−794.
(80) Forsyth, M.; Huang, J.; MacFarlane, D. R. Lithium Doped N-
Methyl-N-Ethylpyrrolidinium Bis(Trifluoromethanesulfonyl)Amide
Fast-Ion Conducting Plastic Crystals. J. Mater. Chem. 2000, 10,
2259−2265.
(81) Jin, L.; Howlett, P.; Efthimiadis, J.; Kar, M.; MacFarlane, D.;
Forsyth, M. Lithium Doped N,N-Dimethyl Pyrrolidinium Tetrafluor-
oborate Organic Ionic Plastic Crystal Electrolytes for Solid State
Lithium Batteries. J. Mater. Chem. 2011, 21, 10171−10178.
(82) Moriya, M.; Kato, D.; Sakamoto, W.; Yogo, T. Plastic
Crystalline Lithium Salt With Solid-State Ionic Conductivity and
High Lithium Transport Number. Chem. Commun. 2011, 47, 6311−
6313.
̈
(60) Wohrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.; Kapernaum,
N.; Litterscheidt, J.; Haenle, J. C.; Staffeld, P.; Baro, A.; Giesselmann,
F.; et al. Discotic Liquid Crystals. Chem. Rev. 2016, 116, 1139−1241.
(61) The mesomorphism of so-called “flying-seed-like” LCs, which
also lack flexible chains, was proposed to originate from thermal
fluctuations due to free rotation of the bulky substituents (thus
creating “soft” parts) [see, for example: Ohta, K.; Shibuya, T.; Ando,
M. Flying-seed-like liquid crystals. J. Mater. Chem. 2006, 16, 3635−
3639].
(62) Seeber, A. J.; Forsyth, M.; Forsyth, C. M.; Forsyth, S. A.; Annat,
G.; MacFarlane, D. R. Conductivity, NMR and Crystallographic Study
of N,N,N,N-Tetramethylammonium Dicyanamide Plastic Crystal
Phases: an Archetypal Ambient Temperature Plastic Electrolyte
Material. Phys. Chem. Chem. Phys. 2003, 5, 2692−2698.
(63) Annat, G.; Adebahr, J.; McKinnon, I.; MacFarlane, D. R.;
Forsyth, M. Plastic Crystal Behaviour in Tetraethylammonium
Dicyanamide. Solid State Ionics 2007, 178, 1065−1071.
(64) Yoon, H.; Lane, G. H.; Shekibi, Y.; Howlett, P. C.; Forsyth, M.;
Best, A. S.; MacFarlane, D. R. Lithium Electrochemistry and Cycling
Behaviour of Ionic Liquids Using Cyano Based Anions. Energy
Environ. Sci. 2013, 6, 979−986.
(65) Pringle, J. M.; Golding, J.; Forsyth, C. M.; Deacon, G. B.;
Forsyth, M.; MacFarlane, D. R. Physical Trends and Structural
Features in Organic Salts of the Thiocyanate Anion. J. Mater. Chem.
2002, 12, 3475−3480.
(66) Adebahr, J.; Grimsley, M.; Rocher, N. M.; MacFarlane, D. R.;
Forsyth, M. Rotational and Translational Mobility of a Highly Plastic
(83) Forsyth, M.; Chimdi, T.; Seeber, A.; Gunzelmann, D.; Howlett,
P. C. Structure and Dynamics in an Organic Ionic Plastic Crystal, N-
J
Chem. Mater. XXXX, XXX, XXX−XXX