10.1002/anie.202005569
Angewandte Chemie International Edition
RESEARCH ARTICLE
Devaraj, Angew. Chem. Int. Ed. 2014, 53, 5805-5809; d) A. Wieczorek,
P. Werther, J. Euchner, R. Wombacher, Chem. Sci. 2017, 8, 1506-1510;
e) A. Wieczorek, T. Buckup, R. Wombacher, Org. Biomol. Chem. 2014,
12, 4177-4185; f) L. G. Meimetis, J. C. T. Carlson, R. J. Giedt, R. H.
Kohler, R. Weissleder, Angew. Chem. Int. Ed. 2014, 53, 7531-7534; g)
Y. Lee, W. Cho, J. Sung, E. Kim, S. B. Park, J. Am. Chem. Soc. 2018,
140, 974-983.
(Figure 3C). Similar kinetics were observed when the
concentration of TCO-TAMRA was dropped to 50 nM (Figure S7),
and with a higher concentration of TCO-TAMRA (2 µM), labeling
was complete when the first data point was collected after 2 min.
By contrast, our previous 6-methyltetrazin-3-yl probe for MAGL
displayed slower labeling kinetics (t1/2 of 13 min) with 2 µM TCO-
TAMRA (Figure S8).[21] Together, these experiments illustrate
how modifying the structure of tetrazine-coupled probes can be
used to tune the IC50 and labeling kinetics.
[7]
a) F. C. J. van de Watering, M. Rijpkema, M. Robillard, W. J. G. Oyen,
O. C. Boerman, Front. Med. 2014, 1, 1-11; b) J.-P. Meyer, P. Adumeau,
J. S. Lewis, B. M. Zeglis, Bioconjugate Chem. 2016, 27, 2791-2807; c)
M. Wang, R. Vannam, W. D. Lambert, Y. Xie, H. Wang, B. Giglio, X. Ma,
Z. Wu, J. Fox, Z. Li, Chem. Commun. 2019, 55, 2485-2488.
a) M. Glöckle, W. Kaim, Angew. Chem. Int. Ed. 1999, 38, 3072-3074; b)
W. Kaim, Coord. Chem. Rev. 2002, 230, 127-139.
[8]
[9]
Conclusion
a) H. Zhang, K. T. Dicker, X. Xu, X. Jia, J. M. Fox, ACS Macro Lett. 2014,
3, 727-731; b) S. Liu, H. Zhang, R. A. Remy, F. Deng, M. E. Mackay, J.
M. Fox, X. Jia, Adv. Mater. 2015, 27, 2783-2790; c) D. L. Alge, M. A.
Azagarsamy, D. F. Donohue, K. S. Anseth, Biomacromolecules 2013, 14,
949-953; d) H. Zhou, J. A. Johnson, Angew. Chem. Int. Ed. 2013, 52,
2235-2238.
In conclusion, a one-pot method is described for the conversion
of (3-methyloxetan-3-yl)methyl carboxylic esters into
3
thiomethyltetrazines that can subsequently serve as a platform for
divergent tetrazine synthesis via Pd-catalyzed cross-coupling and
the first example of monosubstituted tetrazine synthesis via
catalytic thioether reduction. The utility of the method was
demonstrated through the synthesis of aliphatic, aromatic and
heterocycle substituted tetrazines and to the development and
biological evaluation of a new series of tetrazine-coupled probes
for MAGL. We anticipate that the greater access to tetrazine-small
molecule conjugates available by this method will serve as an
enabling tool in chemical biology.
[10] H. Wu, N. K. Devaraj, Acc. Chem. Res. 2018, 51, 1249-1259.
[11] a) T. Cañeque, S. Müller, R. Rodriguez, Nat. Rev. Chem. 2018, 2, 202-
215; b) M. Baalmann, M. J. Ziegler, P. Werther, J. Wilhelm, R.
Wombacher, Bioconjugate Chem. 2019, 30, 1405-1414.
[12] R. Stollé, J. Prakt. Chem. 1906, 73, 277-287.
[13] a) A. Pinner, Ber. Dtsch. Chem. Ges. 1893, 26, 2126-2135; b) K. A.
Hofmann, O. Ehrhart, Ber. Dtsch. Chem. Ges. 1912, 45, 2731-2740; c)
T. Curtius, A. Hess, J. Prakt. Chem. 1930, 125, 40-53; d) J. Yang, M. R.
Karver, W. Li, S. Sahu, N. K. Devaraj, Angew. Chem. Int. Ed. 2012, 124,
5312-5315; e) W. Mao, W. Shi, J. Li, D. Su, X. Wang, L. Zhang, L. Pan,
X. Wu, H. Wu, Angew. Chem. Int. Ed. 2019, 58, 1106-1109; f) S. A. L. Jr,
B. D. Johnson, E. Cohen, J. Heterocycl. Chem. 1975, 12, 1143-1153; g)
M. R. Karver, R. Weissleder, S. A. Hilderbrand, Bioconjugate Chem.
2011, 22, 2263-2270.
Acknowledgements
We would like to thank Jeffery Sperry for helpful discussions,
Remzi Duzguner for DSC analysis, Edelweiss Evrard for
outsourcing support and Lucy Stevens for the in vitro potency data
on probes 10a-c. This work was supported by NIH GM132460
and Pfizer. Instrumentation was supported by NIH awards
[14] Y. Qu, F. X. Sauvage, G. Clavier, F. Miomandre, P. Audebert, Angew.
Chem. Int. Ed. 2018, 57, 12057-12061.
[15] a) C. D. Mboyi, C. Testa, S. Reeb, S. Genc, H. Cattey, P. Fleurat-Lessard,
J. Roger, J.-C. Hierso, ACS Catal. 2017, 7, 8493-8501; b) H. Xiong, Y.
Gu, S. Zhang, F. Lu, Q. Ji, L. Liu, P. Ma, G. Yang, W. Hou, H. Xu, Chem.
Commun. 2020; c) C. Testa, É. Gigot, S. Genc, R. Decréau, J. Roger,
J.-C. Hierso, Angew. Chem. Int. Ed. 2016, 55, 5555-5559; d) C. D. Mboyi,
D. Vivier, A. Daher, P. Fleurat-Lessard, H. Cattey, C. H. Devillers, C.
Bernhard, F. Denat, J. Roger, J.-C. Hierso, Angew. Chem. Int. Ed. 2020,
59, 1149-1154.
P20GM104316,
P30GM110758,
S10RR026962,
and
S10OD016267 and NSF awards CHE-0840401, CHE-1229234,
and CHE-1048367.
Keywords: tetrazine • bioorthogonal chemistry • minimal probe
[16] a) Z. Novák, A. Kotschy, Org. Lett. 2003, 5, 3495-3497; b) A. K.-W.
Nicolas Leconte, Franck Suzenet, Gérald Guillaumet, Synlett 2007, 2,
204-210; c) Z. Li, J. Ding, N. Song, J. Lu, Y. Tao, J. Am. Chem. Soc.
2010, 132, 13160-13161; d) L. Pellegatti, E. Vedrenne, J.-M. Leger, C.
Jarry, S. Routier, Tetrahedron 2010, 66, 4383-4389; e) C. Quinton, V.
Alain-Rizzo, C. Dumas-Verdes, G. Clavier, L. Vignau, P. Audebert, New
J. Chem. 2015, 39, 9700-9713; f) A. M. Bender, T. C. Chopko, T. M.
Bridges, C. W. Lindsley, Org. Lett. 2017, 19, 5693-5696.
• divergent synthesis • orthoester
[1]
[2]
a) H. C. Hang, C. Yu, D. L. Kato, C. R. Bertozzi, Proc. Natl. Acad. Sci.
USA 2003, 100, 14846-14851; b) D. M. Patterson, L. A. Nazarova, J. A.
Prescher, ACS Chem. Biol. 2014, 9, 592-605.
a) G. Clavier, P. Audebert, Chem. Rev. 2010, 110, 3299-3314. b) N.
Saracoglu, N. Tetrahedron 2007, 63, 4199-4236.
[3]
[4]
J. Zhang, V. Shukla, D. L. Boger, J. Org. Chem. 2019, 84, 9397-9445.
a) R. Rossin, M. S. Robillard, Curr. Opin. Chem. Biol. 2014, 21, 161-169;
b) J. Li, S. Jia, P. R. Chen, Nat. Chem. Biol. 2014, 10, 1003-1005; c) J.
C. T. Carlson, H. Mikula, R. Weissleder, J. Am. Chem. Soc. 2018, 140,
3603-3612; d) J. L. Tu, M. H. Xu, R. M. Franzini, ChemBioChem 2019,
20, 1615-1627
[17] a) O. Stetsiuk, A. El-Ghayoury, F. Lloret, M. Julve, N. Avarvari, Eur. J.
Inorg. Chem. 2018, 2018, 449-457; b) D. E. Chavez, D. A. Parrish, L.
Mitchell, Angew. Chem. Int. Ed. 2016, 55, 8666-8669; c) P. Audebert, F.
Miomandre, G. Clavier, M.-C. Vernières, S. Badré, R. Méallet-Renault,
Chem. Eur. J. 2005, 11, 5667-5673.
[18] a) D. E. Chavez, M. A. Hiskey, R. D. Gilardi, Angew. Chem. Int. Ed. 2000,
39, 1791-1793; b) M. H. V. Huynh, M. A. Hiskey, D. E. Chavez, D. L.
Naud, R. D. Gilardi, J. Am. Chem. Soc 2005, 127, 12537-12543.
[19] a) S. D. Schnell, L. V. Hoff, A. Panchagnula, M. H. H. Wurzenberger, T.
M. Klapötke, S. Sieber, A. Linden, K. Gademann, Chem. Sci. 2020, 11,
3042-3047; b) E. Ros, M. Bellido, X. Verdaguer, L. Ribas de Pouplana,
A. Riera, Bioconjugate Chem. 2020, 31, 933-938.
[5]
[6]
a) K. Wang, A. Sachdeva, D. J. Cox, N. M. Wilf, K. Lang, S. Wallace, R.
A. Mehl, J. W. Chin, Nat. Chem. 2014, 6, 393-403; b) K. Lang, J. W. Chin,
Chem. Rev. 2014, 114, 4764-4806; c) I. Nikić, E. A. Lemke, Curr. Opin.
Chem. Biol. 2015, 28, 164-173.
a) N. K. Devaraj, S. Hilderbrand, R. Upadhyay, R. Mazitschek, R.
Weissleder, Angew. Chem. Int. Ed. 2010, 49, 2869-2872; b) J. C. T.
Carlson, L. G. Meimetis, S. A. Hilderbrand, R. Weissleder, Angew. Chem.
Int. Ed. 2013, 52, 6917-6920; c) H. Wu, J. Yang, J. Šečkutė, N. K.
[20] S. C. Fields, M. H. Parker, W. R. Erickson, J. Org. Chem. 1994, 59, 8284-
8287.
This article is protected by copyright. All rights reserved.