easiness of use, wide scope of reactions, and efficiency of
the catalytic system.6 In most cases, these works appear
to be closely related to the use of special ligands or
additives as well as careful optimization of the reaction
conditions,7 in order to overcome the reluctance of alkyl
halides to undergo oxidative addition and to suppress the
tendency of the resulting alkyl-metal intermediate for
destructive â-hydride elimination. Interestingly, the
construction of Csp2-Csp3 bonds implies essentially alkyl
halides or triflates as substrates, the alkenyl or aromatic
moieties being brought by the organometallic reagent.
Stille Cross-Coupling of Activated Alkyltin
Reagents under “Ligandless” Conditions
Agnes Herve, Alain L. Rodriguez, and Eric Fouquet*
Laboratoire de Chimie Organique et Organome´tallique,
UMR5802, Universite´ Bordeaux1,
351, Cours de la Libe´ration, 33405 Talence Cedex, France
Received November 24, 2004
However, a few recent examples can be found of
pallado-catalyzed cross-coupling reactions with alkyl-
organoboranes,8 dialkylzincs,9 Grignard reagents,10 or
alkylorganoindiums.11 Contrary to these organometallics,
alkyltins have been underemployed in comparison with
the large number of publications dedicated to the Stille
coupling reaction. There are indeed very few works
stating the possibility of transferring alkyl groups, other
than methyl, from alkyltins.12 In the course of finding
nontoxic and easily removable tin reagents, we recently
reported the synthesis of new monoorganotins 2 and their
Stille cross-coupling with halides13 and triflates14 as
electrophiles. The general and easy preparation of the
monoorganotins15 by oxidative addition of the corre-
sponding alkyl halides to the stannylene 1,16 associated
with the great functional group tolerance and the neutral
Monoalkyltins activated by a fluoride source are shown to
be as reactive as their vinyl or aryl homologues in the Stille
coupling reaction, thus providing an easy entry into the
pallado-catalyzed formation of Csp3-Csp2 bonds. In addition
to this uncommon reactivity, this methodology holds several
advantages such as (i) a quantitative preparation of stable
and easy to handle alkyltin reagents 2, (ii) a simplified
coupling procedure without any phosphine added ligand
under neutral conditions, and (iii) a facile purification step
of the organic products from the inorganic nontoxic tin
byproducts.
(4) Dohle, W.; Lindsay, D. M.; Knochel, P. Org. Lett. 2001, 3, 2871-
2873.
Cross-coupling reactions represent an extremely ver-
satile tool in organic synthesis for the C-C bond forma-
tion. In the past two decades most of the efforts have been
focused on the Csp2-Csp2 bond formation1 with applica-
tions ranging from organic materials to the total synthe-
ses of complex natural molecules. Recent advances in the
field of Csp3-hybridized coupling reactions are actually
emerging, the alkyl moiety being either on the substrate
or the organometallic partner.2 Among the variety of
transition metals used for this purpose, such as nickel,3
copper,4 or iron,5 palladium remains undoubtedly the
catalyst of choice as it offers the best balance in terms of
(5) Nagano, T.; Hayashi, T. Org. Lett. 2004, 6, 1297-1299.
(6) For Suzuki cross-coupling see: (a) Netherton, M. R.; Fu, G. C.
Angew. Chem., Int. Ed. 2002, 41, 3910-3912. (b) Kirchhoff, J. H.; Dai,
C.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 1945-1947. (c)
Netherton, M. R.; Dai, C.; Neuschu¨tz, K.; Fu, G. C. J. Am. Chem. Soc.
2001, 123, 10099-10100. (d) Ishiyama, T.; Abe, S.; Miyaura, N.;
Suzuki, A. Chem. Lett. 1992, 691-694. For Negishi cross-coupling: (e)
Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12 527-12 530. For
Kumada cross-coupling: (f) Frisch, A. C.; Shaikh, N.; Zapf, A.; Beller,
M. Angew. Chem., Int. Ed. 2002, 41, 4056-4059. With organozirconi-
ums: (g) Wiskur, S. L.; Korte, A.; Fu, G. C. J. Am. Chem. Soc. 2004,
126, 82-83.
(7) (a) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem., Int.
Ed. 2003, 42, 5749-5752. For Stille cross-coupling: (b) Tang, H.;
Menzel, K.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 5079-5082. (c)
Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124,
6343-6348.
(8) (a) Kirchhofff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J.
Am. Chem. Soc. 2002, 124, 13662-13663. (b) Andrus, M. B.; Song, C.
Org. Lett. 2001, 3, 3761-3764.
(9) (a) Yus, M.; Gomis, J. Eur. J. Org. Chem. 2002, 1989-1995. (b)
Piber, M.; Jensen, A. E.; Rottla¨nder, M.; Knochel, P. Org. Lett. 1999,
1, 1323-1326. (c) Boudier, A.; Knochel, P. Tetrahedron Lett. 1999, 40,
687-690.
(10) (a) Gagneur, S.; Montchamp, J.-L.; Negishi, E. Organometallics
2000, 19, 2417-2419. (b) Messner, M.; Kozhushkov, S. I.; de Meijere,
A. Eur. J. Org. Chem. 2000, 1137-1155.
(11) Perez, I.; Perez Sestelo, J.; Sarandeses, L. A. J. Am. Chem. Soc.
2001, 123, 4155-4160.
(12) (a) See one example in ref 7c. (b) Ye, J.; Bhatt, R. K.; Falck, J.
R. J. Am. Chem. Soc. 1994, 116, 1. (c) Kosugi, M.; Sumiya, T.; Ogata,
T.; Sano, H.; Migita, T. Chem. Lett. 1984, 1225. (d) Peet, W. G.; Tam,
W. J. Chem. Soc., Chem. Commun. 1983, 853.
(13) (a) Fouquet, E.; Pereyre, M.; Rodriguez, A. L. J. Org. Chem.
1997, 62, 5242-5243. (b) Rodriguez, A. L.; Peron, G.; Duprat, C.;
Vallier, M.; Fouquet, E.; Fage`s, F. Tetrahedron Lett. 1998, 39, 1179-
1180.
(1) Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-Coupling
Reactions; Wiley-VCH: Weinheim, Germany, 1998. Collman, J.-P.;
Hegedus, L. S.; Norton, J. R.; Finke, R. G. In Principles and Applica-
tions of Organotransition Metal Chemistry; University Science: Mill
Valley, CA, 1987. Heck, R. F. Palladium Reagents in Organic Synthe-
ses; Academic Press: New York, 1985.
(2) For a general overview see: (a) Martin, R.; Fu¨rstner, A. Angew.
Chem., Int. Ed. 2004, 43, 2-5. (b) Ca´rdenas, D. J. Angew. Chem., Int.
Ed. 2003, 42, 384-387. (c) Luh, T.-Y.; Leung, M.; Wong, K.-T. Chem.
Rev. 2000, 100, 3187-3204. Ca´rdenas, D. J. Angew. Chem., Int. Ed.
1999, 38, 3018-3020 and references therein.
(3) With organozincs: (a) Anderson, T. J.; Jones, G. D.; Vicic, D. A.
J. Am. Chem. Soc. 2004, 126, 8100-8101. (b) Zhou, J.; Fu, G. C. J.
Am. Chem. Soc. 2003, 125, 14726-14727. (c) Jensen, A. E.; Knochel,
P. J. Org. Chem. 2002, 67, 79-85. (d) Giovannini, R.; Stu¨demann, T.;
Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. 1999, 64,
3544-3553. (e) Giovannini, R.; Stu¨demann, T.; Dussin, G.; Knochel,
P. Angew. Chem., Int. Ed. 1998, 37, 2387-2390. (f) Devasagayaraj,
A.; Stu¨demann, T.; Knochel, P. Angew. Chem., Int. Ed. 1995, 34, 2723-
2775. With organoborons: (g) Zhou, J.; Fu, G. C. J. Am. Chem. Soc.
2004, 126, 1340-1341. With Grignard’s reagents: (h) Terao, J.;
Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc.
2002, 124, 4222-4223.
(14) Fouquet, E.; Rodriguez, A. L. Synlett 1998, 1323-1324.
(15) Fouquet, E.; Pereyre, M.; Rodriguez, A. L.; Roulet, T. Bull. Soc.
Chim. Fr. 1997, 134, 959-967.
10.1021/jo047907q CCC: $30.25 © 2005 American Chemical Society
Published on Web 02/08/2005
J. Org. Chem. 2005, 70, 1953-1956
1953