Angewandte
Chemie
Table 3: Synthesis of CF3-substitutedtriarylethenes 6.[a]
Entry
5
Ar1
Ar2
Ar3
6
Yield[%] [b]
1
2
3
4
5
a
a
a
a
a
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
p-EtO2C-C6H4
p-F-C6H4
p-Cl-C6H4
p-MeO-C6H4
p-Me2N(CH2)2O-
C6H4
b
c
d
e
f
92
91
96
95
95
Scheme 3. Application to the synthesis of panomifene (2). Conditions:
a) NaSEt, DMF, 1508C, 10 h, 78% yield; b) Cl(CH2)2OTs, K2CO3,
MeCN, reflux, 12 h; c) H2N(CH2)2OH, 2-methoxyethanol, reflux, 2 h,
66% (two steps from 10). DMF=N,N-dimethylformamide, Ts=p-tol-
uenesulfonyl.
6
7
8
9
b
b
c
Ph
Ph
Ph
Ph
p-Cl-C6H4
p-Cl-C6H4
p-MeO-C6H4 Ph
p-MOMO-
C6H4
Ph
Ph
g
h
i
92
89
90
92
Keywords: alkenes · boron · cross-coupling · fluorine · synthetic
methods
p-MeO-C6H4
.
d
Ph
j
10
11
12
13
e
f
f
p-F-C6H4
p-Cl-C6H4 Ph
p-Cl-C6H4 Ph
p-MeO-
C6H4
p-F-C6H4
p-MeO-C6H4
p-F-C6H4
k
l
m
n
91
91
90
94
[1] For a reviewon antiestrogens, see: a) R. A. Magarian, L. B.
Overacre, S. Singh, K. L. Meyer, Curr. Med. Chem. 1994, 1, 61;
b) V. C. Jordan, J. Med. Chem. 2003, 46, 883; c) V. C. Jordan, J.
Med. Chem. 2003, 46, 1081.
[2] H. Wiseman, Tamoxifen: Molecular Basis of Use in Cancer
Treatment and Prevention, Wiley, Chichester, 1994.
[3] M. J. K. Harper, A. L. Walpole, Nature 1966, 212, 87.
[4] a) T. Hiyama, Organofluorine Compounds. Chemistry and
Applications, Springer, Berlin, 2000; b) M. Schlosser, Angew.
Chem. 1998, 110, 1538 – 1556; Angew. Chem. Int. Ed. 1998, 37,
1496 – 1513; c) I. Ojima, J. R. McCarthy, J. T. Welch, ACS Symp.
Ser. 1996, 639; d) M. Hudlicky, A. E. Pavlath in Chemistry of
Organic Fluorine Compounds II. A Critical Review, American
Chemical Society, Washington, DC, 1995; e) J. T. Welch, ACS
Symp. Ser. 1991, 456; f) J. T. Welch, Tetrahedron 1987, 43, 3123.
[5] W. J. Middleton, D. Metzger, J. A. Snyder, J. Med. Chem. 1971,
14, 1193.
g
Ph
p-F-C6H4
[a] Reaction conditions: 5 (0.2 mmol), Ar3I (0.22 mmol), [Pd(tBu3P)2]
(0.01 mmol), aqueous Cs2CO3 (5m; 120 mL), dioxane (0.4 mL), 508C.
[b] Yields of isolated products based on E isomer of 5.
[6] Monograph: a) Drugs Future 1985, 10, 395; b) Drugs Future
1990, 15, 532; Biological properties: c) J. Borvendeg, I. Her-
mann, O. Csuka, Acta Physiol. Hung. 1996, 84, 405 [PubMed ID,
1996, 9328614]; d) V. Erdelyi-Toth, F. Gyergyay, I. Szamel, E.
Pap, J. Kralovanszky, E. Bojti, M. Csorgo, S. Drabant, I.
Klebovich, Anti-Cancer Drugs 1997, 8, 603 [Chem. Abstr. 1997,
127, 287616]; Synthesis: e) G. Nemeth, R. Kapiller-Dezsofi, G.
Lax, G. Simig, Tetrahedron 1996, 52, 12821; Patents: f) G.
Abraham, T. Horvath, L. Toldy, J. Borvendeg, E. Csanyi, E. Kiss,
I. Hermann S, K. Tory (Gyogyszerkutato Intezet, Hung.), US
763078, 1989 [Chem. Abstr. 1989, 111, 77630].
[7] a) M. Shimizu, T. Fujimoto, H. Minezaki, T. Hata, T. Hiyama, J.
Am. Chem. Soc. 2001, 123, 6947; b) M. Shimizu, T. Fujimoto, X.
Liu, H. Minezaki, T. Hata, T. Hiyama, Tetrahedron 2003, 59,
9811.
[8] Dichlorohydrins 3 are readily available by carbonyl addition to
1,1-dichloro-3,3,3-trifluoropropan-2-one with Ar1MgX (see Sup-
porting Information).
Scheme 2. Synthetic elaboration of chlorine-substituted 6. Conditions:
a) LiN(SiMe3)2, [Pd2(dba)3] (2.5 mol%), P(tBu)3 (5 mol%), toluene,
1008C, 12 h; b) HCl; c) NaO(tBu), [Pd2(dba)3] (5 mol%), 2-Cy2P-2’-
Me2N-biphenyl (12 mol%), toluene, 1008C, 18 h. dba=dibenzylidene-
acetone.
[9] The lithio-oxirane generated from styrene oxide by deprotona-
tion with sBuLi/TMEDA in THFat À988C was reportedly stable
at À988C for only 30 min; the presence of a CF3 group might
contribute to the enhanced stability of 4: V. Capriati, S. Florio, R.
Luisi, A. Salomone, Org. Lett. 2002, 4, 2445.
[10] For reviews on the Suzuki–Miyaura coupling reaction, see: a) N.
Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; b) A. Suzuki, J.
Organomet. Chem. 1999, 576, 147; c) N. Miyaura, Top. Curr.
Chem. 2002, 219, 11.
[11] For reviews on fluorinated organometallic compounds, see:
a) D. J. Burton, Z.-Y. Yang, P. A. Morken, Tetrahedron 1994, 50,
2993; b) D. J. Burton, Z.-Y. Yang, Tetrahedron 1992, 48, 189.
[12] For the palladium-catalyzed coupling reaction of a-(trifluoro-
methyl)ethenyl boronic acid with aryl halides, see: a) B. Jiang,
In summary, we have demonstrated a convenient and
versatile synthetic strategy for CF3-substituted triaryl ethenes
through stereoselective preparation of 5 and its Pd-catalyzed
cross-coupling. In particular, water was found to be effective
in the acceleration of the Pd-catalyzed coupling reaction. This
method can be applied to diverse CF3-substituted triaryl
ethenes, including panomifene, a potent nonsteroidal anties-
trogen. Further studies on the preparation of organofluorine
compounds, taking advantage of CF3-substituted lithio-oxi-
ranes and alkenyl–metal compounds are in progress.
Received: October 8, 2003 [Z53032]
Angew. Chem. Int. Ed. 2004, 43, 879 –879
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
881