S. Arai et al. / Tetrahedron Letters 45 (2004) 1845–1848
Table 2. Catalytic asymmetric Darzens reaction using various aldehydes
1847
O
O
O
PTC A (2 mol%)
base (2.4 eq), CH Cl
RCHO
+
X
NPh
R
2
NPh
2
2
2
1
2b or 2c
4
Entry
Aldehyde
Amide
2c
Base
Conditions
Yield (%)
cis/trans
Ee of cis (%)
Ee of trans (%)
1
2
3
4
5
6
7
1b: R ¼ 3-Br-Ph
RbOHÆH2O
RbOHÆH2O
RbOHÆH2O
RbOHÆH2O
RbOHÆH2O
Cs2CO3
rt, 14 h
rt, 24 h
4b: 93
4c: 82
4d: quant
4e: 77
4f: 70
2.4
8.1
2.2
2.0
2.8
4.4
5.0
51
62
57
64
63
57
60
60
60
67
70
64
40
48
1c: R ¼ 4-MeO-Ph 2c
1d: R ¼ 2-MeO-Ph 2c
)10 ꢁC, 132 h
)30 ꢁC, 137 h
rt, 34 h
1e: R ¼ 2-Me-Ph
1f: R ¼ 4-t-Bu-Ph
1g: R ¼ i-Pr
2c
2c
2b
2b
rt, 70 h
rt, 70 h
4g: 77
4h: 61
1h: R ¼ c-Hex
Cs2CO3
O
References and notes
O
MeLi, TMEDA
COMe
CONPh
2
Ph
Ph
THF, -30 °C, 62%
1. For books on PTC, see: (a) Phase-Transfer Catalysis.
Mechanism and Synthesis; Halpern, M. E., Ed.; American
Chemical Society: Washington, DC, 1997; (b) Handbook
of Phase-Transfer Catalysis; Sasson, Y., Neumann, R.,
Eds.; Blackie A. & M.: London, 1997.
(3R, 4S)-5
trans-3b
(63% ee)
63% ee from trans-3b
25
[α]
-65.0 (c 1.0, CHCl )
3
D
Pd/C, H
AcOEt, 80%
2
2. For a review, see: (a) Nelson, A. Angew Chem. Int. Ed.
1999, 38, 1583–1585; (b) Maruoka, K.; Ooi, T. Chem. Rev
2003, 103, 3013–3028.
3. Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am.
Chem. Soc 1984, 106, 446–447.
4. OꢀDonnell, M. J.; Bennett, W. D.; Wu, S. J. Am. Chem.
Soc 1989, 111, 2353–2355.
5. (a) Arai, S.; Tsuji, R.; Nishida, A. Tetrahedron Lett. 2002,
43, 9535–9537; (b) Ohshima, T.; Shibasaki, M. Tetra-
hedron Lett. 2002, 43, 9539–9543.
Pd/C, H
AcOEt, 82%
2
O
CONPh
Ph
2
CONPh
2
Ph
OH
cis-3b
(58% ee)
(R)-6
63% ee from trans-3b
25
[α]
-164.2 (c 0.2, CHCl )
3
D
58% ee from cis-3b
25
[α]
-155.2 (c 0.2, CHCl )
3
D
6. For a review, see: Rosen, T. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H.,
Eds.; Pergamon: Oxford, 1991; 2, p 409.
Scheme 2. Determination of the absolute stereochemistry of 3b.
7. For some examples of the asymmetric Darzens reaction
using chiral auxiliary or external ligands, see: (a) Ohkata,
K.; Shinohara, Y.; Takagi, R.; Hiraga, Y. Chem. Commun.
1996, 2411–2412; (b) Takahashi, T.; Muraoka, M.; Capo,
M.; Koga, K. Chem. Pharm. Bull. 1995, 43, 1821–1823;
For an excellent result using a chiral sulfone amide, see:
Aggarwal, V. K.; Hynd, G.; Picoul, W.; Vasse, J.-L. J.
Am. Chem. Soc. 2002, 124, 9964–9965.
8. (a) Arai, S.; Shioiri, T. Tetrahedron Lett. 1998, 39, 2145–
2148; (b) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T.
Tetrahedron 1999, 55, 6375–6386; (c) Arai, S.; Shirai, Y.;
Ishida, T.; Shioiri, T. Chem. Commun 1999, 49–50; For
smoothly converted into the corresponding epoxides 4b–e
with good enantioselectivity in excellent yield (entries
1–4). Especially, trans-4e was obtained with 70% ee
(entry 4). In the case of aliphatic aldehydes 1g and h, a
weaker base such as Cs2CO3 with 2b was found to be the
most effective and products 4g were obtained with 57%
ee for cis and 40% ee for trans, while 4h was obtained
with 60% ee for cis and 48% ee for trans, respectively
(entries 6 and 7).14
The absolute configurations of 3b were determined by
comparison to the literature to be 2R,3S after trans-3b
was converted to the corresponding methyl ketone 5.15
Cis and trans-3b were converted to (2R)-a-hydroxya-
mide 6 by hydrogenation without racemization, and the
absolute stereochemistry of the cis-isomer was assigned
by optical rotation to be 2R,3R, as outlined in Scheme 2.
ꢀ
chiral crown ethers as PTCs, see: Bako, P.; Szollosy, A.;
Bombicz, P.; Toke, L. Synlett 1997, 291–292.
€ ~
~
9. (a) Arai, S.; Ishida, T.; Shioiri, T. Tetrahedron Lett. 1998,
39, 8299–8302; (b) Arai, S.; Shioiri, T. Tetrahedron 2002,
58, 1407–1413.
10. For successful examples via catalytic asymmetric epoxi-
dation, see: (a) Nemoto, T.; Ohshima, T.; Shibasaki, M. J.
Am. Chem. Soc. 2001, 123, 9474–9475; (b) Nemoto, T.;
Kakei, H.; Gnanadesikan, V.; Tosaki, S.; Shibasaki, M. J.
Am. Chem. Soc. 2002, 124, 14544–14545; Via carbenoid,
see: Imashiro, R.; Yamanaka, T.; Seki, M. Tetrahedron:
Asymmetry 1999, 10, 2845–2851.
In conclusion, we have developed a catalytic asymmetric
Darzens reaction using a-haloamides promoted by a
new chiral PTC. As described above, both aromatic and
aliphatic aldehydes can be used with quite low catalyst
loading (2 mol %) to give the desired epoxides with up to
70% ee. However, the diastereo- and enantiocontrol are
still unsatisfactory, and further modification and opti-
mization of the catalyst are now under investigation.
11. Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc.
1999, 121, 6519–6520.
12. (S)-2,20-Bis(quinuclidiniomethyl)-1,10-binaphthyl dibro-
1
mide (PTC A): white solid; mp 218 ꢁC (decomposed); H
NMR (CDCl3, 270 MHz) d 1.69 (br, 6H), 1.95 (br, 1H),