Q. Miao et al.
[5] a) O. Fischer, E. Hepp, Chem. Ber. 1890, 23, 2789–2793; b) O. Hins-
berg, Ann. Chem. 1901, 319, 260.
found that both 2a and 2b behave as p-type semiconductors
in OFETs. The typical I–V curves for the OFETs of 2a are
shown in Figure 3b, from which a field-effect mobility of 5ꢄ
10À4 cm2 VÀ1 sÀ1 was measured in the saturation regime using
the equation: IDS =(mWCi /2L)ACHTNUGTRENNNUG
[7] Y. Ma, Y. Sun, Y. Liu, J. Gao, S. Chen, X. Sun, W. Qiu, G. Yu, G.
1619–1623; c) L. Sawtschenko, K. Jobst, A. Neudeck, L. Dunsch,
[9] a) M. B. Casu, P. Imperia, S. Schrader, B. Falk, M. Jandke, P. Stroh-
[11] Compounds 2a and 2c are new compounds. Compound 2b was re-
ported to be synthesized from N-methyl-o-phenylenediamine, but
was only characterized by IR and UV/Vis spectroscopy and HRMS.
See: Ref. [6c].
[12] The DHTAP dianion has more possible resonance forms, which are
not shown in Scheme 2b. The real structure of the DHTAP dianion
should be a hybrid of all of the possible resonance forms.
[13] Benzene with two identical substituents ortho to each other is well
known to give an AA’XXꢀ (or AA’BB’) spin system. See: U. Weber,
H, Thiele, NMR Spectroscopy: Modern Spectral Analysis, Wiley-
VCH, Weinheim, 1998.
drain current, m is the field effect mobility, W is the channel
width, L is the channel length, VG is the gate voltage, VT is
the threshold voltage, and Ci is the capacitance per unit area
(11nFcmÀ2 for 300 nm SiO2). In comparison, 2b shows a
lower field effect mobility of 1ꢄ10À4 cm2 VÀ1 sÀ1. The mobili-
ties of 2a and 2b measured in this study appear lower than
the one reported for DHTAP.[24] The low mobilities of 2a
and 2b might be not intrinsic of the materials but limited by
the poor contacts in the devices.
In summary, benzenoid and quinonoid nitrogen-contain-
ing heteropentacenes were successfully isolated and investi-
gated. The complete characterization of 2a and 2b revealed
p-electron delocalization in these polynuclear heterocycles
and p-stacks in their molecular assemblies. These findings
led to a better understanding of the electronic structures
and clearly supported the benzenoid structure of DHTAP,
which has been debated. It is found that both benzenoid
and quinonoid nitrogen-containing heteropentacenes can
function as p-type organic semiconductors. Furthermore, be-
cause the parent molecule DHTAP was regarded as a small-
molecule model for a series of ladder polymers,[6] the find-
ings presented in this report may also have implications for
interesting ladder polymers.
[14] CCDC-714520, CCDC-714521, and CCDC-714522 contain the sup-
plementary crystallographic data for this paper. These data can be
obtained free of charge from the Cambridge Crystallographic Data
[15] M. Holzapfel, C. Lambert, C. Selinka, D. Stalke, J. Chem. Soc.
Perkin Trans. 1 2002, 2, 1553–1561.
À
[16] In comparison, the four N C bonds of phenazine are averaged with
the same bond length of 1.34 ꢂ. See: K. Wozniak, B. Kariuki, W.
Jones, Acta Crystallogr. Sect. A 1991, 47, 1113.
[17] Density function theory (DFT) calculations were performed by
using: Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Mont-
gomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cio-
slowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaro-
mi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wall-
ingford, CT, 2004.
[18] The commonly used HOMO energy level of ferrocene is À4.80 eV.
See: a) J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H.
D’Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov,
M. E. Thompson, Org. Electron. 2005, 6, 11–20.
[19] Our recent study on the electronic structure of 6,13-dihydro-6,13-di-
azapentacene indicates that it has a delocalized HOMO with the
energy level essentially the same as that of pentacene although its
HOMO–LOMO gap is significantly larger than that of pentacene.
This study will be published elsewhere.
Acknowledgements
We thank Prof. Zhifeng Liu (Department of Chemistry, CUHK) for help
with the DFT calculations. We acknowledge the financial support from
Research Grant Council of Hong Kong, General Research Funding 2008-
09 (project number 402508).
Keywords: acenes · electronic structure · heterocycles · self-
assembly · semiconductors
[1] a) A. E. Riley, G. W. Mitchell, P. A. Koutentis, M. Bendikov, P. Kas-
b) M. Tadokoro, S. Yasuzuka, M. Nakamura, T. Shinoda, T. Tatenu-
ma, M. Mitsumi, Y. Ozawa, K. Toriumi, H. Yoshino, D. Shiomi, K.
Brombosz, P. von R. Schleyer, J. I. Wu, S. Barlow, S. R. Marder, K. I.
d) J. Nishida, Naraso, S. Murai, E. Fujiwara, H. Tada, M. Tomura, Y.
[4] a) Q. Miao, T.-Q. Nguyen, T. Someya, G. B. Blanchet, C. Nuckolls, J.
3968
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2009, 15, 3965 – 3969