10.1002/anie.201705390
Angewandte Chemie International Edition
COMMUNICATION
[6]
[7]
S. K. Heo, H. S. Yi, H. J. Yun, C. H. Ko, J. W. Choi, S. D. Park, Food
Chem. Toxicol. 2010, 48, 1129.
commercially available flavonoid chrysin (26) afforded the requisite
substrate 27. Hydrogenation with Ru(cod)(η³-methylallyl)2 and the NHC
ligand (R,R)-SINpEt·HBF4 as a catalyst afforded the flavan-4-ol 28,
albeit in low yield. Reductive removal of the benzylic hydroxyl group
under ionic conditions and deprotection then afforded (2S)-(−)-1 with an
ee of 82%. Chrysin could also be used as convenient source for (±)-1
(see Supporting Information).
W. J. Tsai, H. T. Hsieh, C. C. Chen, Y. C. Kuo, C. F. Chen, Eur. J.
Pharmacol 1998, 346, 103.
[8]
[9]
H. Brockmann, R. Haase, Ber. dtsch. Chem. Ges. A/B 1936, 69, 1950.
K.-i. Nakashima, N. Abe, F. Kamiya, T. Ito, M. Oyama, M. Iinuma, Helv.
Chim. Acta 2009, 92, 1999.
[10] G. Nasini, A. Arnone, L. Merlini, Heterocycles 1989, 29, 1119.
[11] a) A. Arnone, G. Nasini, L. Merlini, J. Chem. Soc., Perkin Trans. 1 1990,
2637; b) A. Arnone, G. Nasini, O. Vajna de Pava, L. Merlini, J. Nat. Prod.
1997, 60, 971.
[12] See SI of retraction: W.-K. Du, H.-Y. Hung, P.-C. Kuo, T.-L. Hwang, L.-
C. Shiu, K.-B. Shiu, E.-J. Lee, S.-H. Tai, T.-S. Wu, Org. Lett. 2016, 18,
3042.
[13] J. M. Jez, M. E. Bowman, R. A. Dixon, J. P. Noel, Nat. Struct. Mol. Biol
2000, 7, 786.
[14] a) A. Robertson, W. B. Whalley, J. Chem. Soc. 1950, 1882; b) Gao Wen-
Fang, Zheng Hong, Wang Yu-Shuang, Zhang Zhi-Hong, Lu Jiang-Chuan,
Zhang Shou-Fang, Chin. J. Pharm. 1989, 20 (6), 247.
[15] C. Selenski, T. R. R. Pettus, Tetrahedron 2006, 62, 5298.
[17] Z. Yang, Y. He, F. D. Toste, J. Am. Chem. Soc. 2016, 138 (31), 9775.
[18] J.-C. Andrez, M.-A. Giroux, J. Lucien, S. Canesi, Org. Lett. 2010, 12,
4368.
Scheme 4. Asymmetric synthesis of (S)-5-Methoxyflavan-7-ol (1).
In summary, we achieved the first synthesis of the highly complex
flavonoid trimers dragonbloodin A1 and A2 in racemic form and
developed a formal asymmetric synthesis. A practical and scalable route
to dracorhodin, nordracorhodin and the corresponding flavanol has also
been developed. Our synthesis clarifies the biogenetic and
stereochemical relationships between the more complex components of
Demonorops draco “Dragon’s Blood” and identifies dragonbloodin A2
(11b) as a pseudo-enantiomer of dragonbloodin A1 (11a). It also reveals
how the “umpolung” of highly electron rich phenols can be achieved in
the absence of oxidizing enzymes, i.e. by autoxidation. Finally, our work
is another demonstration for the power of biomimetic reaction cascades,
which can be highly efficient even when multiple intermolecular steps
are involved.[20]
[19] D. Zhao, B. Beiring, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 8454.
[20] For selected reviews on biomimetic cascades see: a) M. C. de La Torre,
M. A. Sierra, Angew. Chem. Int. Ed. 2004, 43, 160; b) M. Razzak, J. K.
de Brabander, Nat Chem Biol 2011, 7, 865.
Acknowledgements
We thank the German Research Foundation (DFG, SFB749) and the
Studienstiftung des Deutschen Volkes (German Academic Scholarship
Foundation) for financial support. We also want to acknowledge Prof.
Dr. Frank Glorius and his co-worker Mario Wiesenfeldt for support and
collaboration regarding asymmetric hydrogenation experiments of
chrysin derivatives.
Keywords: biomimetic synthesis • total synthesis • natural
product • cascade reactions • autoxidation
[1]
L. Casson, The Periplus Maris Erythraei, Princeton University Press,
Princeton, N.J., 1989.
[2]
[3]
Q. Kong, CN 104490915, 2015.
C.-r. Zhou, S.-j. Guo, J. Zeng, H.-s. Huang, S.-c. Jiang, W.-d. Tian, J.-x.
Qiu, Eur. J. Oral Sci. 2015, 254.
[4]
[5]
W. Wang, D. Olson, B. Cheng, X. Guo, K. Wang, J. Ethnopharmacol.
2012, 142, 168.
C. M. Hu, J. S. Li, K. P. Cheah, C. W. Lin, W. Y. Yu, M. L. Chang, G. C.
Yeh, S. H. Chen, H. W. Cheng, C. S. Choy, Diabetes Res. Clin. Pract.
2011, 94, 417.
This article is protected by copyright. All rights reserved.