A. Szabꢀo et al. / Tetrahedron Letters 45 (2004) 1991–1994
1993
Table 2. Enantiomeric excess (ee), yield, and chemical shifts of
a-aminophosphinic acids 11
5. (a) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc.
ꢀ
1997, 119, 9913; (b) Moreau, P.; Essiz, M.; Merour, J.-Y.;
Bouzard, D. Tetrahedron: Asymmetry 1997, 8, 591.
R
11
_
6. (a) Mikolajczyk, M.; Łyzwa, P.; Drabowicz, J. Tetra-
hedron: Asymmetry 1997, 8, 3991; (b) Mikolajczyk, M.;
Eea
Yield (%)
d
31P
_
a
b
c
20
40
30
52
48
58
30.3
31.6
37.9
Łyzwa, P.; Drabowicz, J.; Wieczorek, M. W.; Błaszcyk, J.
Chem. Commun. 1996, 1503; (c) Lefebvre, I. M.; Evans, S.
A. J. Org. Chem. 1997, 62, 7532.
7. Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.;
Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403.
8. Compound 5c is new, while the other sulfinimines are
a The enantiomeric ratio was determined by 31P NMR after methyl-
ation of the phosphinic acid 5 by diazomethane.
1
known. 5c: H NMR (CDCl3, 250 MHz) d ¼ 2:40 (s, 3H,
CH3), 7.33–7.67 (m, 4H, ArH), 7.71–7.87 (m, 4H, ArH),
9.08 (s, 1H, CH@N).
A subsequent 1,2-addition of the phosphinate 1 to the
C@N moiety in intermediate 12 results in the formation
of 13. Intermediate 13 can lose an aminophosphinate
moiety 10 (in racemic form) and at the same time the
side-product 9 is formed. Further transformation of 9 to
side-products 6 and 8 needs another 1,2-addition of the
phosphorus starting material to 9 supplying 14. The
latter intermediate––by an S–O phosphoryl migration––
gives 15, which splits into 6 and 8 by a redox process. A
possible radical mechanism can be ruled out, because
the same products were observed in the phosphorylation
reaction carried out in the presence of the 2,2,6,6-tetra-
methylpiperidine-1-oxyl radical trapping agent.15
9. Compound 6: 1H NMR (CDCl3, 250 MHz) d ¼ 1:38 (t,
JHH ¼ 6:9 Hz, 3H, CH3CH2O), 2.28 (s, 3H, CH3Ar), 4.34
(dq, JHH ¼ 6:9 Hz, JPH ¼ 14:1 Hz, 2H, CH3CH2O), 6.99–
7.14 (dd, 4H, ArH), 7.17–7.50 (m, 3H, ArH). 7.61–7.69
(m, 2H, ArH). 13C NMR (CDCl3) d ¼ 15:90 (d,
JPC ¼ 6:6 Hz, CH3CH2O), 20.69 (s, CH3Ar), 61.88 (d,
JPC ¼ 6:6 Hz, CH3CH2O), 122.31 (d, JPC ¼ 5:5 Hz),
127.63, 127.86, 129.52 (s, 2CAr), 130.86, 131.02, 131.10
(d, JPC ¼ 150 Hz, PCAr), 132.06 (d, JPC ¼ 2:6 Hz, CAr),
134.92 (d, JPC ¼ 3:8 Hz, 2CAr), 138.72 (d, JPC ¼ 2:3 Hz)
CAr
.
31P NMR (CDCl3) d ¼ 43:8. FAB-MS: m=z 293
[M+1]þ (calcd 292.3).
10. To give a chemical proof for the structure of 9, 6 was
oxidized by m-chloroperbenzoic acid. The product was
monitored by FAB-MS, the fragmentation was identical
with that of 9.
This side reaction sequence is interesting because,
according to our knowledge, there is only one example
in the literature when the sulfur atom of a p-toluene-
sulfinimine, and not the carbon, was attacked. Moreau
et al.5b aiming at the preparation of chiral amines also
isolated an S-substituted product, that is tolyl methyl-
sulfoxide, in a side reaction in the reaction of sulfinimine
5a and methylmagnesium bromide.
11. Compound 10a: 31P NMR (CDCl3) d ¼ 40:0, 39.9 ppm.
Compound 10b: 31P NMR (CDCl3) d ¼ 39:8, 39.7 ppm.
Compound 10c: 31P NMR (CDCl3) d ¼ 38:7, 38.5 ppm.
12. Compound 7a: oil. Yield: 15%. 1H NMR (CDCl3,
250 MHz) d ¼ 1:13 (t, JHH ¼ 7:1 Hz), 1.24 (t,
JHH ¼ 7:1 Hz), 3H, CH3CH2O, 2.15 (s, 3H, CH3Ar), 4.14
(dq, JHH ¼ 7:1 Hz, JPH ¼ 11:8 Hz, 2H, CH3CH2O), 5.58
(d, JPH ¼ 19:3 Hz), 5.62 (d, JHH ¼ 19:3 Hz) 1H, PCH, 6.35
(b, 1H, NH), 6.98–7.32 (m, 11H, ArH), 7.40–7.84 (m, 2H,
ArH). 13C NMR (CDCl3) d ¼ 16:35 (d, JPC ¼ 5:8 Hz,
CH3CH2O), 21.58 (s, CH3Ar), 62.85 (d, JPC ¼ 19:7 Hz,
CH3CH2O), 69.23 (d, JPC ¼ 110:0 Hz, PCH), 122.47,
123.54, 125.02, 125.94, 126.57, 126.67, 127.02, 127.20,
127.57, 128.07, 128.60 (d, JPC ¼ 93:6 Hz, PCAr), 130.70,
Work to improve the regioselectivity and examination of
the scope and limitation of these side-reactions is in
progress.
131.40, 131.90, 132.30, 132.70, 133.70, 137.90 CAr.
31P
NMR (CDCl3) d ¼ 41:3, 40.8, 40.0, 38.9. Compound 7b:
1
Acknowledgements
oil. Yield: 31%. H NMR (CDCl3, 250 MHz) d ¼ 1:15 (t,
JHH ¼ 7:1 Hz), 1.20 (t, JHH ¼ 7:1 Hz), 3H, CH3CH2O, 2.26
(s, 3H, CH3Ar), 3.53 (s), 3.56 (s), 3H, OCH3, 3.93 (dq,
JHH ¼ 7:1 Hz, JPH ¼ 11:7 Hz, 2H, CH3CH2O), 4.87 (b, 1H,
NH), 5.03 (d, JPH ¼ 19:6 Hz), 5.07 (d, JHH ¼ 19:6 Hz) 1H,
PCH, 6.64–6.72 (m, 2H, ArH), 7.05–7.50 (m, 11H, ArH).
13C NMR (CDCl3) d ¼ 16:65 (d, JPC ¼ 5:7 Hz,
CH3CH2O), 21.58 (s, CH3Ar), 55.24 (s, OCH3), 62.10 (d,
JPC ¼ 20:0 Hz, CH3CH2O), 73.21 (d, JPC ¼ 111:0 Hz,
PCH), 111.95, 112.29, 114.27, 114.42, 119.63, 119.91,
125.20 (d, JPC ¼ 107:0 Hz, PCAr), 125.44, 128.03, 128.24,
128.45, 128.93, 129.16, 132.67, 133.04, 133.19, 137.90,
Financial support by the Hungarian Scientific Research
Fund (OTKA No. T 038108) is gratefully acknowl-
edged. A.S. is grateful to Richter Gedeon Rt. for a
scholarship.
References and notes
1. Kuhkar, V. P.; Hudson, H. R. Aminophosphonic and
Aminophosphinic Acids; John Wiley & Sons: Chichester,
2000.
138.17 CAr
.
31P NMR (CDCl3) d ¼ 40:8, 40.6, 39.8, 39.7.
Compound 7c: oil. Yield: 19%. 1H NMR (CDCl3,
250 MHz) d ¼ 1:14 (t, JHH ¼ 7:1 Hz), 1.23 (t,
JHH ¼ 7:1 Hz), 3H, CH3CH2O, 2.14 (s, 3H, CH3Ar), 4.16
(dq, JHH ¼ 7:1 Hz, JPH ¼ 12:0 Hz, 2H, CH3CH2O), 5.68
(d, JPH ¼ 19:2 Hz), 5.72 (d, JHH ¼ 19:2 Hz) 1H, PCH, 6.42
(b, 1H, NH), 6.97–7.34 (m, 11H, ArH), 7.39–7.81 (m, 2H,
ArH). 13C NMR (CDCl3) d ¼ 16:40 (d, JPC ¼ 5:6 Hz,
CH3CH2O), 21.56 (s, CH3Ar), 62.80 (d, JPC ¼ 20:0 Hz,
CH3CH2O), 69.21 (d, JPC ¼ 109:0 Hz, PCH), 125.47,
126.54, 127.02, 127.94, 128.57, 128.67, 129.02, 129.20,
ꢀ
ꢀ
€
€
2. Szabo, A.; Jaszay, M. Z.; Hegedus, L.; Toke, L.;
ꢀ
Petnehazy, I. Tetrahedron Lett. 2003, 44, 4603.
3. (a) Davis, F. A.; Portonovo, P. S.; Reddy, R. E.; Chiu,
Y.-H. J. Org. Chem. 1996, 61, 440; (b) Davis, F. A.;
Fanelli, D. L. J. Org. Chem. 1998, 63, 1981.
4. (a) Davis, F. A.; Reddy, T. R.; Reddy, R. E. J. Org. Chem.
1992, 57, 6387; (b) Liu, G.; Cogan, D. A.; Ellman, J. A. J.
Am. Chem. Soc. 1997, 119, 9913.