ORGANIC
LETTERS
2004
Vol. 6, No. 7
1083-1085
Synthesis of Novel S-Neoglycopeptides
from Glycosylthiomethyl Derivatives
Xiangming Zhu, Kandasamy Pachamuthu, and Richard R. Schmidt*
UniVersita¨t Konstanz, Fachbereich Chemie, Fach M 725, D-78457 Konstanz, Germany
Received November 7, 2003 (Revised Manuscript Received February 16, 2004)
ABSTRACT
Reaction of glycosylthiomethyl azides with amino acid and peptide derivatives containing aspartate and glutamate thio acids gave the
corresponding glycosylthiomethyl amides in excellent yields. Another type of neoglycopeptides was obtained via reaction of glycosylthiomethyl
bromide with cysteine and homocysteine containing peptide derivatives, thus affording the corresponding S-(glycosylthiomethyl) peptides.
Glycoproteins are widely distributed in nature and play a
variety of biological roles.1 Their biosynthesis is based on
post-translational site-selective glycosylation of the peptide
backbone. Glycopeptides,2 which retain the carbohydrate-
peptide linkage region of a glycoprotein but lack its size and
complexity, are much more amenable to study and are
important models for glycoproteins. As a consequence,
significant attention has been paid to synthesize glycopeptides
during the past two decades.3 However, site-selective at-
tachment of glycosyl residues to serine and threonine or
asparagine residues in order to obtain natural O- and
N-glycopeptides is generally not possible. This has led to
considerable efforts toward the synthesis of modified glyco-
peptides, often termed neoglycopeptides or glycopeptide
mimetics.4 They possess non-native sugar-peptide linkages,5
and importantly, the resulting neoglycopeptides have found
use in various biological studies and demonstrated bio-
activities comparable to the native glycopeptides.5a,6,7
For the desirable site-selective attachment of glycosyl
residues to prepared peptides chemoselective reactions of
sugars with hydroxylamine and hydrazine derivatives have
been successfully employed (I-III in Figure 1). Addition-
ally, several groups have exploited the unique reactivity of
cysteine (Cys) or homocysteine (Hcy) residues. For example,
N-glycosyliodoacetamide has been designed7 and coupled
(4) Reviewed in: (a) Hang, H. C.; Bertozzi, C. R. Acc. Chem. Res. 2001,
34, 727-736. (b) Marcaurelle, L. A.; Bertozzi, C. R. Chem. Eur. J. 1999,
5, 1384-1390.
(5) There are a large number of reports on the synthesis of neoglyco-
peptides; for some recent examples, see: (a) Marcaurelle, L. A.; Rodriguez,
E. C.; Bertozzi, C. R. Tetrahedron Lett. 1998, 39, 8417-8420. (b) Macindoe,
W. M.; van Oijen, A. H.; Boons, G. J. Chem. Commun. 1998, 847-848.
(c) Peri, F.; Cipolla, L.; Ferla, B. L.; Dumy, P.; Nicotra, F. Glycoconjugate
J. 1999, 16, 399-404. (d) Wittmann, V.; Seeberger, S. Angew. Chem. 2000,
112, 4508-4512; Angew. Chem., Int. Ed. 2000, 39, 4348-4352. (e) George,
S. K.; Schwientek, T.; Holm, B.; Reis, C. A.; Clausen, H.; Kihlberg, J. J.
Am. Chem. Soc. 2001, 123, 11117-11125. (f) Peluso, S.; Imperiali, B.
Tetrahedron Lett. 2001, 42, 2085-2087. (g) Ramos, D.; Rollin, P.; Klaffke,
W. J. Org. Chem. 2001, 66, 2948-2956. (h) Macmillan: D.; Daines, A.
M.; Bayrhuber, M.; Flitsch, S. L. Org. Lett. 2002, 4, 1467-1470 and
references therein. (i) Carrasco, M. R.; Nguyen, M. J.; Burneil, D. R.;
MacLaren, M. D.; Hengel, S. M. Tetrahedron Lett. 2002, 43, 5727-5729.
(j) McGarvey, G. J.; Benedum, T. E.; Schmidtmann, F. W. Org. Lett. 2002,
4, 3591-3594. (k) Filira, F.; Biondi, B.; Biondi, L.; Giannini, E.; Gobbo,
M.; Negri, L.; Rocchi, R. Org. Biomol. Chem. 2003, 1, 3059-3063. (l)
Carrasco, M. R.; Brown, R. T.; Serafimova, I. M.; Silva, O. J. Org. Chem.
2003, 68, 195-197.
(1) (a) Varki, A. Glycobiology 1993, 3, 97-130. (b) Lis, H.; Sharon, N.
Eur. J. Biochem. 1993, 218, 1-27. (c) Dwek, R. A. Chem. ReV. 1996, 96,
683-720.
(2) Glycopeptides and related compounds: Synthesis, Analysis and
Applications; Large, D. G., Warren, C. D., Eds.; Marcel Dekker, Inc.: New
York, Basel, Hong Kong, 1997.
(3) For some recent reviews on glycopeptide synthesis, see: (a) Jansson,
A. M.; Hilaire, P. M. S.; Meldal, M. In Synthesis of peptides and
peptidomemetics; Goodman, M., Felix, A., Moroder, L., Toniolo, C., Eds.;
Houben-Weyl: Stuttgart, 2003; pp 235-332. (b) Davis, B. G. Chem. ReV.
2002, 102, 579-601. (c) Wittmann, V. In Glycoscience: Glycoproteins,
Fraser-Reid, B. O., Tatsuta, K., Thiem, J., Eds.; Springer-Verlag: Berlin,
2001; pp 2253-2352. (d) Herzner, H.; Reipen, T.; Schultz, M.; Kunz, H.
Chem. ReV. 2000, 100, 4495-4537. (e) Arsequell, G.; Valencia, G.
Tetrahedron: Asymmetry 1999, 10, 3045-3094. (f) Taylor, C. M.
Tetrahedron 1998, 54, 11317-11362.
(6) Liu, H.; Wang, L.; Brock, A.; Wong, C.-H.; Schultz, P. G. J. Am.
Chem. Soc. 2003, 125, 1702-1703.
(7) Davis, N. I.; Flitsch, S. L. Tetrahedron Lett. 1991, 32, 6793-6796.
10.1021/ol036186z CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/04/2004