10.1002/adsc.202000818
Advanced Synthesis & Catalysis
[2] E. Kühnel, D. D. P. Laffan, G. C. Lloyd-Jones, T. M.
del Campo, I. R. Shepperson, J. L. Slaughter, Angew.
Chem. Int. Ed. 2008, 47, 7075-7078.
11316-11322; c) F. He, F. Li, R. M. Koenigs, J. Org.
Chem. 2020, 85, 1240-1246; d.) S. Jana, Z. Yang, C.
Pei, X. Xu, R. M. Koenigs, Chem. Sci. 2019, 10,
10129-10134; e) Z. Yang, Y. Guo, R. M. Koenigs,
Chem. Eur. J. 2019, 25, 4881-4884; f) K. Orlowska, K.
Rybicka-Jasinska, P. Krajewski, D. Gryko, Org. Lett.
2020, 22, 1018-1021; g) M. L. Stivanin, A. A. G.
Fernandes, A. F. da Silva, C. Y. Okada Jr., I. D.
Jurberg, Adv. Synth. Catal. 2020, 362, 1106-1111.
[3] a) T. Ye, M. A. Mckervey, Chem. Rev. 1994, 94, 1091-
1160; b) G. M. Coppola, H. F. Schuster, α-Hydroxy
Acids in Enantioselective synthesis; Wiley-VCH:
Weinheim, 1997; pp 1-513; c) M. P. Doyle, M. A.
Mckervey, T. Ye, Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds; Wiley:
New York, 1998; Chapters 8.3 and 8.4; d) Z. Zhang, J.
Wang, Tetrahedron 2008, 64, 6577-6605; e) S.F. Zhu,
Q.-L- Zhou, Acc. Chem. Res. 2012, 45, 1365-1377.
[9]S. Jana, Z. Yang, F. Li, C. Empel, J. Ho, R. M. Koenigs,
Angew. Chem. Int. Ed. 2020, 59, 5562-5566.
[10] Z. Zhang, D. Yadagiri, V. Gevorgyan, Chem. Sci.
2019, 10, 8399-8404.
[4] Selected references on metal-catalyzed O-H
functionalization: a) A. Pereira, Y. Champouret, C.
Martín, E. Álvarez, M. Etienne, T. R. Belderraín, P. J.
Pérez, Chem. Eur. J. 2015, 21, 9769-9775; b) X. L. Xie,
S.-F. Zhu, J.-X. Guo, Y. Cai, Q.L. Zhou, Angew. Chem.
Int. Ed. 2014, 53, 2978-2981; c) A. F. Noels, A.
Deminceau, N. Petintot, A. J. Hubert, Ph. Teyssié,
Tetrahedron 1982, 38, 2733-2739.
[11] a) B. Ma, P. Wu, X. Wang, Z. Wang, H. -X. Lin, H.-
X. Dai, Angew. Chem. Int. Ed. 2019, 58, 13335-13339;
b) A. C. S. Reddy, P. M. Reddy, P. Anbarasan, Adv.
Synth. Catal. 2020, 362, 801-806; c) M. Tone, Y.
Nakagawa, S. Chanthamth, I. Fujisawa, N. Nakayama,
H. Goto, K. Shibatomi, S. Iwasa, RSC. Adv. 2018, 8,
39865-39869.
[5] Selected reviews on transition metal-catalyzed carbene
transfer reactions: a) A. Ford, H. Miel, A. Ring, C. N.
Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev.
2015, 115, 9981-10080; b) Y. Xia, D. Qiu, J. Wang,
Chem Rev. 2017, 117, 13810-13889.
[12] For details, please see ESI.
[13] No effect of cross-contamination from old glassware
and stirring bars was observed.
[14] The para C-H functionalization product of phenol
1
[6] a) I. Jurberg, H. M. L. Davies, Chem. Sci. 2018, 9,
5112-5118; b) T. Xiao, M. Mei, Y. He, L. Zhou, Chem.
Commun. 2018, 54, 8865-8868; c) R. Hommelsheim, Y.
Guo, Z. Yang, C. Empel, R. M. Koenigs, Angew. Chem.
Int. Ed. 2019, 58, 1203-1207.
was determined by H NMR spectroscopy; data is in
accordance with the literature: S. Hajra, S. Maity, S.
Roy, R. Maity, S. Samanta, Eur. J. Org. Chem. 2019,
969-987.
[15] The decomposition of cylic diazoamide did not reveal
the formation of preferred decomposition products,
instead a complex reaction mixture was observed.
[7] Selected review articles on visible light mediated
carbene transfer reactions: a) L. W. Ciszewski, K.
Rybicka-Jasinska, D. Gryko, Org. Biomol. Chem. 2019,
17, 432-448; b) C. Empel, R. M. Koenigs, Synlett 2019,
30, 1929-1934.
[16] Product ratio was determined by 1H NMR
spectroscopy; data of compound 21 is in accordance
with the literature: C. L. Ladd, D. S. Roman, A. B.
Charette, Org, Lett. 2013, 15, 1350-1353.
[8] Selected articles on visible light mediated carbene
transfer reactions: a) F. He, R. M. Koenigs, Chem.
Commun. 2019, 55, 4881-4884; b) C. Empel, F. W.
Patureau, R. M. Koenigs, J. Org. Chem. 2019, 84,
6
This article is protected by copyright. All rights reserved.