Table 1 Selected interatomic distances in X-ray single crystal structure of
7
Temperature 293(2) K. Wavelength 0.71073 Å. Crystal system, or-
thorhombic. Space group, P212121 (#19). Unit cell dimensions a
11.977(2), b = 15.047(3), c = 21.319(4) Å. Volume 3842.2(12) Å3. Z = 4,
calculated density = 1.367 Mg m23. Absorption coefficient, 0.111 mm21
=
Atom X – Atom Y
Distance/Å
.
F(000), 1656. Crystal size, 0.50 3 0.10 3 0.02 mm. Theta range for data
collection, 1.66 to 19.00 deg. Limiting indices, 210 @ h @ 10, 213 @ k @
13, 213 @ l @ 19. Reflections collected/unique 8199/3077 [R(int) =
0.1058]. Completeness to theta = 19.00, 99.8%. Absorption correction,
numerical max. and min. transmission 0.9978 and 0.9465. Refinement
method, full-matrix least-squares on F2. Data/restraints/parameters
3077/0/225. Goodness-of-fit on F2 0.997. Final R indices [I > 2s(I)] R1 =
0.0947, wR2 = 0.2260. R indices (all data) R1 = 0.1456, wR2 = 0.2455.
Absolute structure parameter fixed at 0.5 to avoid correlation with other
parameters. Largest diff. peak and hole 0.570 and 20.410 e Å23. CCDC
graphic data in .cif or other electronic format.
O2A–H1
O2A–H3
O2A–H5
O1A–Hc
O1–Ha
N1–N1A
N1–N2A
O1A–aromatic C2aA
O1A–aromatic C1aA
O1–aromatic C2a
O1–aromatic C1a
2.57 (1)
2.46 (1)
3.01 (1)
2.78 (1)
2.52 (1)
3.22 (2)
3.22 (2)
2.97 (2)
2.85 (2)
3.04 (2)
3.31 (2)
1H-NMR data for 5–8: 5 (300 MHz, CDCl3): d 8.30 (s, 2H, NH), 7.44
(s, 4H, aromatic H), 5.33 (apt t, 2H, J2,3 9.0, J3,4 9.0, H-3), 5.24 (apt t, 2H,
H-4), 4.97 (apt t, 2H, J1,2 8.9, H-2), 4.87 (d, 2H, H-1), 4.15 (d, 2H, J4,5 9.5,
H-5), 2.11, 2.08, 2.03 (each s, each 6H, each COCH3); 6 (300 MHz, D2O):
d 7.55 (s, 4H, Ar H), 4.92 (d, 2H, J1,2 8.8, H-1), 4.16 (d, 2H, J4,5 9.5, H-5),
3.73 (apt t, 2H, J3,4 9.3, H-4), 3.65 (apt t, 2H, J2,3 9.0, H-3), 3.40 (apt t, 2H,
H-2); 7 (300 MHz, CDCl3): d 7.42 (s, 4H, aromatic H), 5.50 (apt t, 2H, J3,4
9.4, H-4), 5.15 (apt t, 2H, J2,3 9.2, H-3), 5.24 (apt t, 2H, H-4), 4.87 (apt t, 2H,
H-2), 4.22 (d, 2H, J1,2 8.3, H-1), 4.11 (d, 2H, J4,5 9.2, H-5), 3.35 (s, 6H,
NCH3), 2.02 (2s, 12H, COCH3), 2.00 (s, 12H, COCH3); 8 (300 MHz, D2O):
d 7.55 (s, 4H, Ar H), 4.53 (d, 2H, J1,2 8.3, H-1), 4.04 (d, 2H, J4,5 9.7, H-5),
3.81 (apt t, 2H, J3,4 9.3, H-4), 3.38 (s, 3H, NCH3), 3.37 (overlapping signals,
8H, H-2 and NCH3), 3.28 (apt t, 2H, J2,3 9.0, H-3).
‡ Cis is defined as the carbohydrate groups being on the same side of the
plane defined by the aromatic ring. One referee referred to it as U-
shaped.
1 Y. V. Lee, R. R. Townsend, M. R. Hardy, J. Lönngren, J. Arnarp, M.
Haraldsson and H. Lönn, J. Biol. Chem., 1983, 258, 199.
2 M. Mammen, S.-K. Choi and G. M. Whitesides, Angew. Chem., Int. Ed.,
1998, 37, 2754.
3 C. H. Wong, Acc. Chem. Res., 1999, 32, 376.
4 H. Kamitakahara, T. Suzuki, N. Nishigori, Y. Suzuki, O. Kanie and C.-
H. Wong, Angew. Chem., Int. Ed., 1998, 37, 1524.
Fig. 3 Van der Waals surfaces were calculated using Macromodel 8.1 for 7.
Shown are the (a) azide–azide and carbonyl–pyranose proton interactions
and (b) pyranose oxygen–aromatic interactions.
5 P. I. Kitov, J. M. Sadowska, G. Mulvey, G. D. Armstrong, H. Ling, N.
S. Pannu, R. J. Read and D. R. Bundle, Nature, 2000, 403, 669.
6 B. Liu and R. Roy, J. Chem. Soc., Perkin Trans. 1, 2001, 773.
7 S. Andre, R. J. Pieters, I. Vrasidas, H. Kaltner, L. Kuwabara, F. T. Liu
and R. M. J. Liskamp, Chem. Bio. Chem., 2001, 2, 822.
8 L. L. Kiessling and N. L. Pohl, Chem. Biol., 1996, 3, 71.
9 G. Kretzschmar, U. Sprengard, H. Kunz, E. Bartnik, W. Schmidt, A.
Toepfer, B. Horsch, M. Krause and D. Seiffge, Tetrahedron, 1995, 51,
13015.
10 J. C. Sacchettini, L. G. Baum and C. F. Brewer, Biochemistry, 2001, 40,
3009.
11 J. B. Corbell, J. L. Lundquist and E. J. Toone, Tetrahedron: Asymmetry,
2000, 11, 95.
12 J. D. Klemm, S. L. Schreiber and G. R. Crabtree, Annu. Rev. Immunol.,
1998, 21, 418–422.
13 J. H. Rao and G. M. Whitesides, J. Am. Chem. Soc., 1997, 119,
10286–10290.
14 I. Vrasidas, S. Andre, P. Valentini, C. Bock, M. Lensch, H. Kaltner, R.
M. J. Liskamp, H. J. Gabius and R. J. Pieters, Org. Biomol. Chem., 2003,
1, 803–810.
crosspeak is observed between H-5 and aromatic protons but not
between the methyl group and H-4 or H-5. An NOE enhancement
between H-4 and aromatic proton would be expected if there was a
significant population of E-syn in solution and it would be expected
to be stronger than that observed between H-5 and the aromatic
protons based on distances observed in the solid state structure
(provided above); this NOE was not observed. The existence of
both E and Z isomers would be expected to be detected by the
1
presence of at least two signal sets in the H-NMR as has been
observed for diastereomeric tertiary amides previously.18 The
major set of signals observed for 7 and 8 is assigned to the EE
isomer. It is not evident from the NMR spectra of 7 or 8 if a cis or
U-shaped conformation where both amides are E-anti is the only
structure that exists in solution. A trans or S-shaped conformation
would be possible and calculations (Macromodel 8.1) indicate it is
a low energy conformation.
15 P. V. Murphy, H. Bradley, M. Tosin, N. Pitt, G. M. Fitzpatrick and W.
K. Glass, J. Org. Chem., 2003, 68, 5693 and cited references.
16 R. Yamasaki, A. Tanatani, I. Azumaya, S. Saito, K. Yamaguchi and H.
Kagechika, Org. Lett., 2003, 5, 1265 and cited references.
17 R. Hirschmann, K. C. Nicolaou, S. Pietranico, J. Salvino, E. Leahy, P.
A. Sprengeler, G. Furst, A. B. Smith, C. D. Strader, M. A. Cascieri, M.
R Candelore, C. Donaldson, W. Vale and L. Maechler, J. Am. Chem.
Soc., 1992, 114, 9217.
In summary, amide modification in these bivalent structures
alters amide configuration and thus carbohydrate presentation. A
consequence is that non-covalent interactions are facilitated and
observed in the solid state.
Notes and references
†
Crystal data and structure refinement for 7. Crystals were obtained
18 M. Tosin and P. V. Murphy, Org. Lett., 2002, 4, 3675.
19 H. Kunz and H. Waldmann, Angew. Chem., Int. Ed., 1984, 23, 71.
from CH2Cl2 and petroleum ether (1 : 3). C32H38N8O16. M = 790.70.
C h e m . C o m m u n . , 2 0 0 4 , 4 9 4 – 4 9 5
495