440
H. S. Jeon et al. / Tetrahedron Letters 48 (2007) 439–441
H
O
(i)
(ii)
N
N
OH
OH
R1
R1
OMe
OMe
OMe
2
3
1
R2
NH
S
H
(iv)
(iii)
(v)
N
N
OTBS
OTBS
R1
R1
OMe
OMe
4
5
R2
R2
N
NH
S
S
S
R2
(vii)
(vi)
N
N
HN
R1
N
OH
R1
R1
OMe
OMe
6
7
2-imidazolidinethione (8)
Scheme 1. Solid-phase synthesis approach to 2-imidazolidinethiones. Reagents and conditions: (i) trimethylorthoformate/MeOH = 1/4,
H2NCH(R1)CH2OH (2 equiv), 24 h; (ii) boran–pyridine complex (3 equiv), AcOH (3 equiv), 24 h; (iii) TBSCl (3 equiv), DMAP (0.1 equiv), TEA
(3 equiv); (iv) R2NCS (5 equiv), THF; (v) tetrabutyl ammonium fluoride (5 equiv), THF; (vi) DEAD (5 equiv), Ph3P (5 equiv), CH2Cl2, o/n; (vii) 95%
TFA/H2O, 4 h.
Table 1. Synthesis of 2-imidazolidinethione derivatives (8a–k) from
the solid-phase as outlined in Scheme 1
Stuart, D. I.; Stammers, D. K. J. Biol. Chem. 2000, 275,
5633.
2. Dziadulewicz, E. K.; Ritchie, T. J.; Hallett, A.; Snell, C.
R.; Ko, S. Y.; Wrigglesworth, R.; Hughes, G. A.;
Dunstan, A. R.; Bloomfield, G. C.; Drake, G. S.; Brown,
M. C.; Lee, W.; Burgess, G. M.; Davis, C.; Yaqoob, M.;
Perkins, M. N.; Campbell, E. A.; Davis, A. J.; Rang, H. P.
J. Med. Chem. 2000, 43, 769.
3. Kappe, C. O. Bioorg. Med. Chem. Lett. 2000, 10, 49.
4. Franzen, R. G. J. Comb. Chem. 2000, 2, 195.
5. Goff, D. Tetrahedron Lett. 1998, 37, 5309.
6. (a) Nefzi, A.; Giulianotti, M. A.; Ong, N. A.; Houghten,
R. A. Org. Lett. 2000, 2, 3349; (b) Nefzi, A.; Ostresh, J.
M.; Giulianotti, M.; Houghten, R. A. J. Comb. Chem.
1999, 1, 195; (c) Nefzi, A.; Ostresh, J. M.; Meyer, J.-P.;
Houghten, R. A. Tetrahedron Lett. 1997, 38, 931.
7. For a review to see: D’hooghe, M.; De Kimpe, N.
Tetrahedron 2006, 62, 513.
Entry R1
R2
Yielda (%) Purityb (%)
8a
8b
8c
8d
8e
8f
H
H
H
H
H
H
H
H
H
Me
i-Pr
C6H5
45
52
61c
50
66
40
59
71
72
74
81
99
82
90
94
93
95
96
92
4-MeC6H4
4-NO2C6H4
4-ClC6H4
3-CF3C6H4
4-CNC6H4
2-Cl, 4-NO2C6H3
8g
8h
8i
2-MeO, 4-NO2C6H3 75
4-NO2C6H4
8j
8k
54
63
(S)-i-Pr 4-NO2C6H4
a Overall yields from the ArgoGel-MB-CHO resin 1 having loading
capacity of 0.41 mmol/g.
b Purity was determined by HPLC after short-pass silica gel column
chromatography.
8. Kim, T. H.; Lee, N.; Kim, J. N. Bull. Korean Chem. Soc.
2001, 22, 761.
c Mp of free base, 111–112 ꢁC (Ref. 14, mp = 112–113 ꢁC).
9. For cyclodesulfurization of thioureas using the super
oxide radical anion, see: (a) Kim, Y. H.; Kim, Y. I. Synlett
1997, 1324; For that using DCC, see: (b) You, S.-W.; Lee,
K.-J. Bull. Korean Chem. Soc. 2001, 22, 1270; For that
using TsCl and NaOH, see: (c) Kim, T. H.; Lee, N.; Lee,
G.-J.; Kim, J. N. Tetrahedron 2001, 57, 7137.
seven steps in high purity with moderate to good yield.
This synthetic methodology is ideally suited for auto-
mated applications, because all the reactions were car-
ried out under ambient conditions.
10. ArgoGel-MB-CHO resin was purchased from Argonaut
Technologies Inc.
11. Kung, P.-P.; Swayze, E. Tetrahedron Lett. 1999, 40, 5651.
12. Typical synthetic approach of 2-imidazolidinethione is as
follows: For the synthesis of 4,5-dihydro-N-(2-chloro-4-
nitrophenyl)-2-thiazolamine 8h, the coupling of the
ethanolamine (2.0 equiv) to ArgoGel-MB-CHO resin
(0.1 mmol), which had been swollen with trimethylortho-
formate/MeOH = 4/1 (5 mL), via reductive amination
using borane–pyridine in acetic acid, followed by protec-
tion of the free alcohol with TBSCl, gave the silylated resin
4 according to the previous method.11 The dried resin 4 in
dry tetrahydrofuran (5 mL) was then reacted with 2-
chloro-4-nitrophenyl isothiocyanate (5 equiv) for 24 h.
The resulting resin was washed thoroughly with DMF
Acknowledgements
This work was supported by Korea Research Founda-
tion Grant (KRF-2004-041-C00208). The spectroscopic
data was obtained from the Korea Basic Science Insti-
tute, Gwangju branch.
References and notes
1. Ren, J. S.; Diprose, J.; Warren, J.; Esnouf, R. M.; Bird, L.
E.; Ikemizu, S.; Slater, M.; Milton, J.; Balzarini, J.;