ACS Catalysis
Letter
Scheme 4. Complementary Pathways for the Preparation of
Nitriles from Primary Amines or Primary Alcohols/
Ammonia
ABBREVIATIONS
■
ABNO, 9-azabicyclo [3.3.1] nonane N-oxyl; bpy, 2,2′-bipyridyl;
DMAP, 4-dimethylaminopyridine; DTBNO, di-tert-butylnitr-
oxide; ketoABNO, 9-azabicyclo[3.3.1]nonan-3-one-N-oxyl;
NMI, N-methylimidazole; TEMPO, 2,2,6,6-tetramethyl-1-pi-
peridinyloxyl
REFERENCES
■
(1) For reviews of aerobic alcohol oxidation, see: (a) Arends, I. W. C.
E.; Sheldon, R. A. In Modern Oxidation Methods; Backvall, J.-E., Ed.;
̈
oxidation of the alcohol to the aldehyde, condensation with
ammonia would afford the same primary imine intermediate
(A) involved in amine oxidation reactions. In this case, the
reaction would not be susceptible to formation of the
homocoupled imine. Initial screening studies revealed that
Cu(OTf)2/TEMPO catalyzes efficient conversion of benzylic
alcohols into nitriles in high yield with 2.2 equiv of aqueous
ammonia in DMSO at 60 °C (Scheme 5; see Supporting
Wiley-VCH Verlag Gmb & Co.: Weinheim, 2004; pp 83−118.
(b) Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A.
Acc. Chem. Res. 2002, 35, 774. (c) Schultz, M. J.; Sigman, M. S.
Tetrahedron 2006, 62, 8227. (d) Parmeggiani, C.; Cardona, F. Green
Chem. 2012, 14, 547.
(2) For a review of aerobic oxidation of amines, see: Schumperli, M.
̈
T.; Hammond, C.; Hermans, I. ACS Catal. 2012, 2, 1108.
(3) (a) Brackman, W.; Gaasbeek, C. J. Rec. Trav. Chim. 1966, 85, 221.
(b) Brackman, W.; Gaasbeek, C. J. Rec. Trav. Chim. 1966, 85, 257.
(4) For leading references to Cu/TEMPO-mediated aerobic alcohol
oxidation, see the following: (a) Semmelhack, M. F.; Schmid, C. R.;
Scheme 5. Preliminary Results of Aerobic Oxidative
Coupling of Alcohols and Ammonia to Form Nitriles
́
Cortes, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374.
(b) Ragagnin, G.; Betzemeier, B.; Quici, S.; Knochel, P. Tetrahedron
2002, 58, 3985. (c) Gamez, P.; Arends, I. W. C. E.; Reedijk, J.;
Sheldon, R. A. Chem. Commun. 2003, 2414. (d) Gamez, P.; Arends, I.
W. C. E.; Sheldon, R. A.; Reedijk, J. Adv. Synth. Catal. 2004, 346, 805.
(e) Geisslmeir, D.; Jary, W. G.; Falk, H. Monatsh. Chem. 2005, 136,
1591. (f) Jiang, N.; Ragauskas, A. J. J. Org. Chem. 2006, 71, 7087.
(g) Mannam, S.; Alamsetti, S. K.; Sekar, G. Adv. Synth. Catal. 2007,
349, 2253. (h) Kumpulainen, E. T. T.; Koskinen, A. M. P. Chem.Eur.
J. 2009, 15, 10901. (i) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc.
2011, 133, 16901. (j) Hoover, J. M.; Steves, J. E.; Stahl, S. S. Nat.
Information for full details). While this effort was in progress,
the groups of Huang,6c Tao,6d and Muldoon6e reported similar
catalyst systems for this transformation. The work of Huang et
al. is particularly noteworthy because their (bpy)CuI/TEMPO
catalyst system enables conversion of a broad range of allylic,
benzylic and aliphatic alcohols.
Protoc. 2012, 7, 1161. (k) Konning, D.; Hiller, W.; Christmann, M.
̈
Org. Lett. 2012, 14, 5258.
(5) For leading references to Cu/TEMPO and related catalyst
systems for amine oxidation, see the following: (a) Han, B.; Yang, X.-
L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem.
2012, 77, 1136. (b) Hu, Z.; Kerton, F. M. Org. Biomol. Chem. 2012, 10,
1618. (c) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249.
(d) Huang, B.; Tian, H.; Lin, S.; Xie, M.; Yu, X.; Xu, Q. Tetrahedron
Lett. 2013, 54, 2861.
(6) For leading references to Cu/TEMPO and related catalyst
systems for oxidative coupling of alcohols and amines, see: (a) Tian,
H.; Yu, X.; Li, Q.; Wang, J.; Xu, Q. Adv. Synth. Catal. 2012, 354, 2671.
(b) Flanagan, J. C. A.; Dornan, L. M.; McLaughlin, M. G.; McCreanor,
N. G.; Cook, M. J.; Muldoon, M. J. Green Chem. 2012, 14, 1281.
(c) Yin, W.; Wang, C.; Huang, Y. Org. Lett. 2013, 15, 1850. (d) Tao,
C.; Liu, F.; Zhu, Y.; Liu, W.; Cao, Z. Org. Biomol. Chem. 2013, 11,
3349. (e) Dornan, L. M.; Cao, Q.; Flanagan, J. C. A.; Crawford, J. J.;
Cook, M. J.; Muldoon, M. J. Chem. Commun. 2013, 49, 6030.
(7) For Cu-catalyzed oxidative homocoupling of amines in the
absence of a nitroxyl cocatalyst, see: Patil, R. D.; Adimurthy, S. Adv.
Synth. Catal. 2011, 353, 1695.
In conclusion, we have identified (tBu2bpy)CuI/ABNO as an
efficient catalyst system with broad substrate scope for oxidative
dehydrogenation of primary amines to nitriles. The identity of
the nitroxyl reagent and the solvent are key factors in achieving
selectivity for nitrile rather than the homocoupled imine.
Elucidation of the mechanistic origin of this nitroxyl-dependent
selectivity, together with characterization of the mechanistic
similarities and differences among reactions of alcohols and
amines is an important focus of ongoing work.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures, kinetic data, and additional
experiment data are included. This material is available free of
(8) Cu-mediated oxidation of primary amines to nitriles in the
absence of a nitroxyl cocatalyst require stoichiometric Cu, more-
forcing reaction conditions, and/or promote competitive formation of
homocoupled imine: (a) Capdevielle, P.; Lavigne, A.; Maumy, M.
Synthesis 1989, 453. (b) Capdevielle, P.; Lavigne, A.; Sparfel, D.;
Baranne-Lafont, J.; Cuong, N. K.; Maumy, M. Tetrahedron Lett. 1990,
31, 3305. (c) Maeda, Y.; Nishimura, T.; Uemura, S. Bull. Chem. Soc.
Jpn. 2003, 76, 2399.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(9) For Ru-catalyzed amine oxidation for nitrile, see: (a) Yamaguchi,
K.; Mizuno, N. Angew. Chem., Int. Ed. 2003, 42, 1480. (b) Li, F.; Chen,
J.; Zhang, Q.; Wang, Y. Green Chem. 2008, 10, 553. (c) Zhang, Y.; Xu,
K.; Chen, X.; Hu, T.; Yu, Y.; Zhang, J.; Huang, J. Catal. Commun.
2010, 11, 951. (d) Venkatesan, S.; Kumar, A. S.; Lee, J.-F.; Chan, T.-S.;
Zen, J.-M. Chem.Eur. J. 2012, 18, 6147.
ACKNOWLEDGMENTS
■
We are grateful to the NIH (R01-GM100143), together with a
consortium of pharmaceutical companies (Eli Lilly, Pfizer, and
Merck) for financial support of this work. NMR spectroscopy
facilities were supported in part by the NSF (CHE-1048642).
1655
dx.doi.org/10.1021/cs400360e | ACS Catal. 2013, 3, 1652−1656