11
Secci, F.; Aitken, D. J.; Frongia, A. Eur. J. Org. Chem. 2015,
4358-4366.
References and notes
ACCEPTED MANUSCRIPT
6. (a) Capitta, F.; Frongia, A.; Ollivier, J.; Piras, P. P.; Secci, F.
1. (a) Namsylo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103, 1485-
1537; (b) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103,
1449-1484; (c) Fu, N.-Y.; Chan, S.-H. in The Chemistry of
Cyclobutanes, ed. Rappoport Z.; Liebman, J. F. Wiley, Chichester,
2005, pp. 357–440; (d) Lee-Ruff, E. in The Chemistry of
Synlett 2011, 89-93; (b) Melis, N.; Secci, F.; Boddaert, T.; Aitken,
D. J.; Frongia, A. Chem. Commun. 2015, 51, 15272-15275.
7. (a) Stevens, T. S.; Creighton, E. M.; Gordon, A. B.; MacNicol, M.
J. Chem. Soc. 1928, 3193-3197. For review, see: (b) Vanecko, J.
A.; Wan, H.; West, F. G. Tetrahedron 2006, 62, 1043-1062; (c)
Lahm, G.; Pacheco, J. C. O.; Opatz, T. Synthesis 2014, 46, 2413-
2421; (d) Clayden, J.; Donnard, M.; Lefranc, J.; Tetlow, D. J.
Chem. Commun. 2011, 47, 4624-4639; (e) Tayama, E.; Sato, R.;
Ito, M.; Iwamoto, H.; Hasegawa, E. Heterocycles 2013, 87, 381-
388.
8. For a study involving the substituent effects on the stability of
para-substituted benzyl radicals, see: Singh, N. K.; Popelier, P.L.
A.; O’Malley, P. J. Chemical Physics Letters 2006, 426, 219-221.
9. (a) Heard, G. L.; Yates, B. F. Aust. J. Chem. 1994, 47, 1685-1694;
(b) Maeda, Y.; Sato, Y. J. Chem. Soc., Perkin Trans. 1 1997,
1491-1493; (c) Ghigo, G.; Cagnina, S.; Maranzana, A.; Tonachini,
G. J. Org. Chem. 2010, 75, 3608-3617; (d) Ranchi, M. J. Chem.
Cyclobutanes, ed. Rappoport Z.; Liebman, J. F. Wiley, Chichester,
2005, pp. 281–355; (e) Salaün, J. Science of Synthesis 2004, 26,
557; (f) Secci, F.; Frongia, A.; Piras, P. P. Molecules 2013, 18,
15541-15572.
2. For recent illustrations, see: (a) Mahuteau-Betzer, F.; Ghosez, L.
Tetrahedron Lett., 1999, 40, 5183-5186; (b) Ghosez, L.; Yang, G.;
Cagnon, J. R.; Le Bideau, F.; Marchand-Brynaert, J. Tetrahedron
2004, 60, 7591-7606; (c) Mahuteau-Betzer, F.; Ghosez, L.
Tetrahedron 2002, 58, 6991-7000; (d) Ghosez, L.; Mahuteau-
Betzer, F.; Genicot, C.; Vallribera, A.; Cordier, J.-F. Chem.–Eur.
J. 2002, 8, 3411-3422; (e) Araki, T.; Ozawa, T.; Yokoe, H.;
Kanematsu, M.; Yoshida, M.; Shishido, K. Org. Lett. 2013, 15,
200-203; (f) Araki, T.; Manabe, Y.; Fujioka, K.; Yokoe, H.;
Kanematsu, M.; Yoshida, M.; Shishido, K. Tetrahedron Lett.
2013, 54, 1012-1014; (g) Ozawa, T.; Kanematsu, M.; Yokoe, H.;
Yoshida, M.; Shishido K. Heterocycles 2012, 85, 2927-2932; (h)
Ozawa, T.; Kanematsu, M.; Yokoe, H.; Yoshida, M.; Shishido, K.
J. Org. Chem. 2012, 77, 9240-9249; (i) Filippova, E. V.; Weston,
L. A.; Kuhn, M. L.; Geissler, B.; Gehring, A. M.; Armoush, N.;
Adkins, C. T.; Minasov, G.; Dubrovska, I.; Shuvalova, L.; Wisnor,
J. R.; Lavis, L. D.; Satchell, K. J. F.; Becker, D. P.; Anderson, W.
F.; Johnson, R. J. J. Biol. Chem. 2013, 288, 10522-10535; (j)
Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. Org. Biomol.
Chem. 2011, 9, 7085-7091; (k) Mayans, E.; Gargallo, A.; Álvarez-
Larena, Á.; Illa, O.; Ortuño, R. M. Eur. J. Org. Chem. 2013, 1425-
1433; k) Declerck, V.; Aitken, D. J. Amino Acids 2011, 41, 587-
595; (l) Awada, H.; Robin, S.; Guillot, R.; Yazbeck, O.; Naoufal,
D.; Jaber, N.; Hachem, A.; Aitken, D. J. Eur. J. Org. Chem. 2014,
7148-7155; (m) Hernvann, F.; Rasore, G.; Declerck, V.; Aitken,
D. J. Org. Biomol. Chem. 2014, 12, 8212–8222; (n) de Nanteuil,
F.; Waser, J. Angew. Chem. Int. Ed. 2013, 52, 9009-9013.; (o)
Perrotta, D.; Racine, S.; Vuilleumier, J.; de Nanteuil, F.; Waser, J.
Org. Lett. 2015, 17, 1030–1033.
Pharm. Res. 2011, 1, 115-121.; (e) Gon alves-Farbos, M.-H.;
Ç
Vial, L.; Lacour, J. Chem. Commun. 2008, 829-831; (f) Tomooka,
K.; Sakamaki, J.; Harada, M.; Wada, R. Synlett 2008, 5, 683-686;
(g) Kowalkowska, A.; Jończyk, A. Tetrahedron 2015, 71, 9630-
9637.
10. [1,2]-Stevens reaction is usually not observed when allyl [2,3]-
rearrangement is possible, see: Sweeney, J. B. Chem. Soc. Rev.
2009, 38, 1027-1038.
11. The requisite starting material 5a-p was prepared by the
condensation reaction between α-hydroxy cyclobutanone and the
corresponding N-allyl aniline, in the presence of catalytic amount
of DMAP (20 mol%). Unfortunately, no reactivity was observed
for N-allyl anilines carrying an electron-withdrawing group such
as -NO2 or -CN in the para-position of the aromatic ring.
12. For recent examples on the application of [2,3]-rearrangement of
allylic ammonium ylides to the synthesis of α-amino acid
derivatives, see:(a) West, T. H.; Daniels, D. S. B.; Slawin, A. M.
Z.; Smith, A. D. J. Am. Chem. Soc. 2014, 136, 4476-4479; (b)
Soheili, A.; Tambar, U. K. Org. Lett. 2013, 15, 5138-5141; (c)
Soheili, A.; Tambar, U. K. J. Am. Chem. Soc. 2011, 133, 12956-
12959; (d) Blid, J.; Panknin, O.; Tuzina, P.; Somfai, P. J. Org.
Chem. 2007, 72, 1294-1300; (e) Blid, J.; Panknin, O.; Somfai, P.
J. Am. Chem. Soc. 2005, 127, 9352-9353; (f) Tayama, E.;
Naganuma, N.; Iwamoto, H.; Hasegawa, E. Chem. Commun.
2014, 50, 6860-6862.
13. For critical assessments of strategies for indole synthesis, see: (a)
Inman, M.; Moody, C. J. Chem. Sci. 2013, 4, 29-41; (b) D. F.
Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195-7210.
14. For some examples of cyclobutane-indolyl-substituted
compounds, see: (a) Duan, G.-J.; Ling, J.-B.; Wang, W.-P.; Luo,
Y.-C.; Xu, P.-F. Chem. Commun. 2013, 49, 4625-4627; (b)
Gutekunst, W. R.; Baran, P. S. J. Org. Chem. 2014, 79, 2430-
2452. For some examples of cyclobuta-fused indoline derivatives,
see: (c) Wasilewska, A.; Woźniak, B. A.; Doridot, G.; Piotrowska,
K.; Witkowska, N.; Retailleau, P.; Six, Y. Chem. Eur. J. 2013, 19,
11759-11767 (d) Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M.
Chem. Commun. 2015, 51, 2320-2323.
3. (a) Dembitsky, V. M. J. Nat. Med. 2008, 62, 1-33; (b) Zhou, Q.;
Snider, B. B. Org. Lett. 2011, 13, 526-529; (c) Baldwin, J. E.;
Adlington, R. M.; Parisi, M. F.; Ting, H. H. Tetrahedron 1986, 42,
2575-2586; (d) Adlington, R. M.; Baldwin, J. E.; Jones, R. H.;
Murphy, J. A.; Parisi, M. F. J. Chem. Soc., Chem. Commun. 1983,
24, 1479-1481; (e) Belluṧ, D.; Ernest, B. Angew. Chem. Int. Ed.
Engl. 1988, 27, 797-827.
4. To our knowledge, there has been only one example of the
synthesis of a quaternary α-alkyl-α-amino cyclobutanone. Frahm
and co-workers observed, unexpectedly, the formation of the
derivative 2-(1-phenylethylamino)-2-benzylcyclobutanone as a
mixture of two diastereomers from 2-benzyloxycyclobutanone and
(S)-or (R)-phenyl ethylamine using PTSA as a catalyst and xylene
as solvent under reflux; no indication of the chemical yield was
reported, however. See footnote 10 of the following paper: Bisel,
P.; Breitling, E.; Frahm, A. W. Eur. J. Org. Chem. 1998, 729-733.
5. (a) Aitken, D. J.; Bernard, A. M.; Capitta, F.; Frongia, A.; Guillot,
R.; Ollivier, J.; Piras, P. P.; Secci, F.; Spiga, M. Org. Biomol.
Chem. 2012, 10, 5045-5048; (b) Aitken, D. J.; Capitta, F.;
Frongia, A.; Ollivier, J.; Piras, P. P.; Secci, F. Synlett, 2012, 727-
730; (c) Aitken, D. J.; Capitta, F.; Frongia, A.; Gori, D.; Guillot, J.
Ollivier, R.; Piras, P. P.; Secci, F.; Spiga, M. Synlett 2011, 712-
716; (d) Aitken, D. J.; Caboni, P.; Eijsberg, H.; Frongia, A.;
Guillot, R.; Ollivier, J.; Piras, P. P.; Secci, F. Adv. Synth. Catal.
2014, 356, 941-945; (e) Capitta, F.; Frongia, A.; Ollivier, J.;
Aitken, D. J.; Secci, F.; Piras, P. P.; Guillot, R. Synlett 2015, 26,
123-126; (f) Secci, F.; Frongia, A.; Rubanu, M. G.; Sechi, M. L.;
Sarais, G.; Arca, M.; Piras, P. P. Eur. J. Org. Chem. 2014, 6659-
6675; (g) Vaquer, A. F.; Frongia, A.; Secci, F.; Tuveri, E. RSC
Advances, 2015, 117, 96695-96704; (h) Frongia, A.; Melis, N.;
Serra, I.; Secci, F.; Piras, P. P.; Caboni, P. Asian J. Org. Chem.
2014, 3, 378-381; (i) Melis, N.; Ghisu, L.; Guillot, R.; Caboni, P.;
Supplementary Material
Supplementary material that may be helpful in the review
process should be prepared and provided as a separate electronic
file. That file can then be transformed into PDF format and
submitted along with the manuscript and graphic files to the
appropriate editorial office.
Click here to remove instruction text...