Communications
420; isochromophilone IX: f) A. P. Michael, E. J. Grace, M.
Kotiw, R. A. Barrow, Aust. J. Chem. 2003, 56, 13 – 15.
[2] M. Natsume, Y. Takahashi, S. Marumo, Agric. Biol. Chem. 1988,
52, 307 – 312.
isomerization of the resulting o-alkynylbenzaldehydes in 1,2-
dichloroethane/TFA (10:1) at room temperature produced
the corresponding 2-benzopyrylium salts.[22] Oxidation of the
2-benzopyrylium salts with IBX in the presence of tetrabu-
tylammonium iodide afforded the corresponding C3-func-
tionalized azaphilones 33–36 (61–82%).
As a prelude to the anticipated use of the azaphilones as
scaffolds in a chemical library synthesis, we conducted the
functionalization sequence shown in Scheme 8. Reaction of
[3] For representative synthetic efforts on azaphilones, see: a) R.
Chong, R. R. King, W. B. Whalley, J. Chem. Soc. C 1971, 3566 –
3571; b) R. Chong, R. R. King, W. B. Whalley, J. Chem. Soc. C
1971, 3571 – 3575; c) T. Suzuki, C. Okada, K. Arai, A. Awall, T.
Shimizu, K. Tanemura, T. Horaguchi, J. Heterocycl. Chem. 2001,
38, 1409 – 1418; d) T. Kamino, Y. Murata, N. Kawai, S. Hoso-
kawa, S. Kobayashi, Tetrahedron Lett. 2001, 42, 5249 – 5252.
[4] For reviews on the chemistry of 2-benzopyrylium salts, see: E.
Kuznetsov, I. V. Shcherbakova, A. T. Balaban, Adv. Heterocycl.
Chem. 1990, 50, 157 – 254.
[5] For recent examples of cycloisomerization of alkynyl substrates,
see: a) K. R. Roesch, R. C. Larock, Org. Lett. 1999, 1, 553 – 556;
b) J. D. Tovar, T. M. Swager, J. Org. Chem. 1999, 64, 6499 – 6504;
c) A. V. Kel'in, A. W. Sromek, V. Gevorgyan, J. Am. Chem. Soc.
2001, 123, 2074 – 2075; d) A. V. Kel'in, V. Gevorgyan, J. Org.
Chem. 2002, 67, 95 – 98; e) N. Asao, K. Takahashi, S. Lee, T.
Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650 –
12651; f) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem.
2003, 115, 3628 – 3630; Angew. Chem. Int. Ed. 2003, 42, 3504 –
3506; g) N. Asao, T. Nogami, S. Lee, Y. Yamamoto, J. Am. Chem.
Soc. 2003, 125, 10921 – 10925; h) N. Asao, K. Sato, Y. Yama-
moto, Tetrahedron Lett. 2003, 44, 5675 – 5677.
Scheme 8. a) Benzylamine (1.2 equiv), CH3COOH (3.6 equiv), THF,
RT, 90%; b) benzoyl chloride (1.5 equiv), Et3N (1.0 equiv), DMAP
(0.5 equiv), CH2Cl2, RT, 86%.
[6] During the preparation of this manuscript,
a publication
appeared reporting the gold(iii)-catalyzed formation of isoben-
zopyrylium (2-benzopyrylium) cations and their cycloaddition
with olefins and electron-rich heteroarenes: G. Dyker, D.
Hildebrandt, J. Liu, K. Merz, Angew. Chem. 2003, 115, 4536 –
4538; Angew. Chem. Int. Ed. 2003, 42, 4399 – 4402.
azaphilone 21 with benzylamine in THF in the presence of
acetic acid[23] proceeded smoothly to afford the corresponding
vinylogous 4-pyridone 37, which underwent acylation with
benzoyl chloride to produce vinylogous 4-pyridone ester 38.
These experiments demonstrate access to three orthogonal
diversification points on the azaphilone core structure.
In conclusion, an approach to the synthesis of diverse
azaphilones has been developed by employing gold(iii)-
catalyzed cycloisomerization of o-alkynylbenzaldehydes into
2-benzopyrylium salts and subsequent oxidation to form the
azaphilone ring system by using IBX in conjunction with a
phase-transfer catalyst. Preliminary results suggest that the
azaphilones may be functionalized to afford highly function-
alized vinylogous 4-pyridones. Further studies including
asymmetric synthesis of select azaphilone targets and prep-
aration of azaphilone-based chemical libraries are in progress
and will be reported in due course.
[7] For use of a geminal diacetate (acylal) as a protecting group for
aldehydes, see: a) K. S. Kochhar, B. S. Bal, R. P. Deshpande,
S. N. Radadhyaksha, H. W. Pinnick, J. Org. Chem. 1983, 48,
1765 – 1767; b) A. Kawada, S. Takeda, K. Yamashita, H. Abe, T.
Harayama, Chem. Pharm. Bull. 2002, 50, 1060 – 1065.
[8] For Sonogashira coupling with 2,3-dibromobenzaldehyde as a
substrate, see: A. Fkyerat, G. Dubin, R. Tabacchi, Helv. Chim.
Acta 1999, 82, 1418 – 1422.
[9] For catalysis by gold species, see: a) G. Dyker, Angew. Chem.
2000, 112, 4407 – 4409; Angew. Chem. Int. Ed. 2000, 39, 4237 –
4239; b) two special issues on gold catalysis have appeared:
Catal. Today 2002, 72, 1 – 169.
[10] For gold(iii)-mediated activation of alkynes, see: a) R. O. C.
Norman, W. J. E. Parr, C. B. Thomas, J. Chem. Soc. Perkin Trans.
1 1976, 1983 – 1987; b) Y. Fukuda, K. Utimoto, J. Org. Chem.
1991, 56, 3729 – 3731; c) Y. Fukuda, K. Utimoto, Bull. Chem. Soc.
Jpn. 1991, 64, 2013 – 2015; d) Y. Fukuda, K. Utimoto, Synthesis
1991, 975 – 978; e) F. Gasparrini, M. Giovannoli, D. Misiti, G.
Natile, G. Palmieri, L. Maresca, J. Am. Chem. Soc. 1993, 115,
4401 – 4402; f) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem.
1998, 110, 1475 – 1478; Angew. Chem. Int. Ed. 1998, 37, 1415 –
1418; g) E. Mizushima, K. Sato, T. Hayashi, M. Tanaka, Angew.
Chem. 2002, 114, 4745 – 4747; Angew. Chem. Int. Ed. 2002, 41,
4563 – 4565.
Received: October 8, 2003 [Z53037]
Keywords: alkynes · azaphilones · cycloisomerization · gold ·
.
Lewis acid catalysis
[11] Synthetic applications of Au(OAc)3 appear to be limited thus far
to sol–gel preparations for the reduction of NOx; see: E. Seker,
E. Gulari, Appl. Catal. A 2002, 232, 203 – 217.
[1] Daldinin: a) T. Hashimoto, S. Tahara, S. Takaoka, M. Tori, Y.
Asakawa, Chem. Pharm. Bull. 1994, 42, 2397 – 2399; trichoflec-
tin: b) E. Thines, H. Anke, O. Sterner, J. Nat. Prod. 1998, 61,
306 – 308; 5-bromoochrephilone: c) K. Natsuzaki, H. Tahara, J.
Inokoshi, H. Tanaka, J. Antibiot. 1998, 51, 1004 – 1011; 8-o-
methylsclerotiorinamine: d) J.-Y. Nam, H.-K. Kim, J.-Y. Kwon,
M. Y. Han, K.-H. Son, U. C. Lee, J.-D. Choi, B.-M. Kwon, J. Nat.
Prod. 2000, 63, 1303 – 1305; S-15183a: e) K. Kono, M. Tanaka, Y.
Ono, T. Hosoya, T. Ogita, T. Kohama, J. Antibiot. 2001, 54, 415 –
[12] Formation of 2-benzopyrylium salt 17 was verified by 1H and
13C NMR spectroscopy (see the Supporting Information). For
previous NMR studies of 2-benzopyrylium salts, see ref. [3c].
[13] It is possible that gold(iii) acetate may undergo ligand exchange
with trifluoroacetic acid to form gold(iii) trifluoroacetate. For
preparation of gold(iii) triflate by exchange of AuBr3 with triflic
acid, see: N. E. Drysdale, R. E. Bockrath, WO 9409055, 1994.
1242
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 1239 –1239