LETTER
Transmission of Axial Chirality to Spiro Center Chirality
2865, 1605, 1515, 1490, 1465, 1255, 1215, 1165, 1110,
621
be stereospecifically transmitted to the spiro center chiral-
1045, 755 cm–1. Anal. Calcd for C34H47BrO6Si: C, 61.90; H,
7.18. Found: C, 61.98; H, 7.45. HPLC (Daicel CHIRAL-
PAK AD-H, f0.46 × 250 mm × 2, hexane:i-PrOH = 85:15,
1.0 mL/min) retention time: 10.9 min for (+)-6, 12.8 min for
(–)-6. Compound 9: Colorless needles (hexane), mp 194.0–
194.5 °C; [a]D24 +16 (c 1.1, CHCl3)*. 1H NMR (CDCl3): d =
6.95 (s, 1 H), 6.78 (s, 1 H), 6.55 (s, 1 H), 5.48 (s, 1 H), 4.45
(s, 1 H), 3.92 (s, 3 H), 3.82 (s, 3 H), 3.81 (s, 3 H), 3.60 (t, 2
H, J = 6.8 Hz), 3.30–3.18 (m, 2 H), 2.50–2.39 (m, 3 H), 2.34
(ddd, 1 H, J1 = J2 = 6.8 Hz, J3 = 13.2 Hz), 1.42 (s, 9 H), 0.95
(s, 21 H), –0.1 (s, 9 H). 13C NMR (CDCl3): d = 155.8, 151.1,
148.2, 147.1, 146.6, 138.5, 134.1, 133.5, 132.0, 129.5,
119.1, 114.3, 111.4, 79.2, 64.1, 61.3, 55.9, 55.7, 40.1, 36.9,
33.1, 28.4, 17.9, 11.9, 1.7. IR (KBr): 3325, 2940, 2865,
1685, 1515, 1465, 1245, 1170, 1110, 880 cm–1. Anal. Calcd
for C36H61NO7Si2: C, 63.96; H, 9.09; N, 2.07. Found: C,
64.26; H, 9.38; N, 2.06. HPLC (Daicel CHIRALCEL OD-H,
f0.46 × 250 mm × 2, hexane:i-PrOH = 98:2, 1.0 mL/min)
retention time: 20.5 min for (+)-9, 25.6 min for (–)-9.
Compound 10: [a]D24 –24 (c 0.99, CHCl3)*. 1H NMR
(CDCl3): d = 6.81 (s, 1 H), 6.61 (s, 1 H), 6.10 (s, 1 H), 4.59
(br, 1 H), 3.92 (s, 3 H), 3.85 (s, 3 H), 3.72–3.61 (m, 2 H),
3.42–3.33 (m, 2 H), 3.35 (s, 3 H), 3.24 (s, 3 H), 2.61 (t, 2 H,
J = 7.7 Hz), 2.16 (ddd, 1 H, J1 = J2 = 7.2 Hz, J3 = 14.5 Hz),
2.03 (ddd, 1 H, J1 = J2 = 5.6 Hz, J3 = 14.5 Hz), 1.43 (s, 9 H),
0.99 (s, 21 H), –0.11 (s, 9 H). 13C NMR (CDCl3): d = 196.7,
155.7, 153.9, 153.2, 148.8, 148.3, 146.8, 130.1, 129.3,
125.2, 113.3, 111.3, 94.5, 79.3, 61.3, 55.9, 55.8, 50.3, 50.2,
39.8, 37.4, 33.2, 28.3, 17.9, 11.8, 1.6. IR (NaCl): 3385,
2945, 2865, 1715, 1665, 1510, 1465, 1250, 1165, 1090, 1070
cm–1. Anal. Calcd for C37H63NO8Si2: C, 62.94; H, 8.99; N,
1.98. Found: C, 62.65; H, 9.18; N, 1.94. HPLC (Daicel
CHIRALCEL OD-H, f0.46 × 250 mm, hexane:i-PrOH =
98:2, 1.0 mL/min) retention time: 7.4 min for (–)-10, 12.6
min for (+)-10. Compound 11: [a]D27 +52.0 (c 1.73,
CHCl3)*. 1H NMR (CDCl3): d = 6.56 (s, 1 H), 6.49 (s, 1 H),
6.05 (s, 1 H), 4.15 (ddd, 1 H, J1 = J2 = 5.1 Hz, J3 = 13.2 Hz),
3.85 (s, 6 H), 3.76 (ddd, 1 H, J1 = 5.1 Hz, J2 = 8.9 Hz,
J3 = 13.2 Hz), 3.66 (s, 3 H), 3.63 (ddd, 1 H, J1 = 6.2 Hz,
J2 = 8.1 Hz, J3 = 9.7 Hz), 3.49 (ddd, 1 H, J1 = 6.2 Hz,
J2 = 8.1 Hz, J3 = 9.7 Hz), 3.03 (ddd, 1 H, J1 = 5.1 Hz,
J2 = 8.9 Hz, J3 = 16.1 Hz), 2.93 (ddd, 1 H, J1 = J2 = 5.1 Hz,
J3 = 16.1 Hz), 2.31 (ddd, 1 H, J1 = J2 = 6.2 Hz, J3 = 12.3
Hz), 2.11 (ddd, 1 H, J1 = J2 = 8.1 Hz, J3 = 12.3 Hz), 1.37 (s,
9 H), 0.94 (s, 21 H), 0.0 (s, 9 H). 13C NMR (CDCl3): d =
181.6, 167.4, 157.1, 154.9, 148.7, 148.5, 147.7, 126.3,
124.3, 123.5, 111.0, 109.8, 81.1, 66.3, 61.3, 59.8, 55.8, 55.7,
40.1, 34.7, 28.3, 27.9, 17.9, 11.7, 1.4. IR (NaCl): 2940, 2865,
1695, 1660, 1515, 1365, 1260, 1225, 1165, 1090, 860 cm–1.
Anal. Calcd for C36H59NO7Si2: C, 64.15; H, 8.82; N, 2.08.
Found: C, 64.01; H, 9.02; N, 1.93. HPLC (Daicel CHIRAL-
CEL OD-H, f0.46 × 250 mm, hexane:i-PrOH = 99:1, 0.5
mL/min) retention time: 14.3 min for (+)-11, 17.1 min for
(–)-11. Compound 1: Pale yellow needles (CHCl3), mp
90.5–91.0 °C; [a]D24 +46 (c 0.86, CHCl3)*. HPLC (Daicel
CHIRALPAK AD-H, f0.46 × 250 mm, hexane:i-PrOH =
80:20, 1.0 mL/min) retention time: 31.6 min for (+)-1, 25.3
min for (–)-1.
ity in the erythrinan product 1.
In summary, synthesis of O-methylerysodienone in enan-
tiomerically pure form was described. Considering the in-
creasing availability of axially chiral, non-racemic
biphenyl compounds, the present conception, i.e. the
transmission of axial chirality to spiro center chirality,
will render a totally efficient and enantioselecive access to
erythrinan alkaloids. The research in this direction is
currently in progress and will be reported in due course.
References
(1) (a) Dyke, S. F.; Quessy, S. N. In The Alkaloids, Vol. 18;
Rodrigo, R. G. A., Ed.; Academic Press: New York, 1981,
1. (b) Tsuda, Y.; Sano, T. In The Alkaloids, Vol. 48; Cordell,
G. A., Ed.; Academic Press: San Diego, 1996, 249.
(2) For recent synthetic studies, see: (a) Fukumoto, H.; Esumi,
T.; Ishihara, J.; Hatakeyama, S. Tetrahedron Lett. 2003, 44,
8047. (b) Shimizu, K.; Takimoto, M.; Mori, M. Org. Lett.
2003, 5, 2323. (c) Gill, C.; Greenhalgh, D. A.; Simpkins, N.
S. Tetrahedron Lett. 2003, 44, 7803. (d) Chikaoka, S.;
Toyao, A.; Ogasawara, M.; Tamura, O.; Ishibashi, H. J. Org.
Chem. 2003, 68, 312. (e) Miranda, L. D.; Zard, S. Z. Org.
Lett. 2002, 4, 1135. (f) Allin, S. M.; James, S. L.; Elsegood,
M. R. J.; Martin, W. P. J. Org. Chem. 2002, 67, 9464.
(g) Padwa, A.; Waterson, A. G. J. Org. Chem. 2000, 65,
235. (h) Hosoi, S.; Nagao, M.; Tsuda, Y.; Isobe, K.; Sano,
T.; Ohta, T. J. Chem. Soc., Perkin Trans. 1 2000, 1505.
(i) For asymmetric synthesis of erythrinan alkaloid, see:
Sano, T.; Kamiko, M.; Toda, J.; Hosoi, S.; Tsuda, Y. Chem.
Pharm. Bull. 1994, 42, 1375. (j) Tsuda, Y.; Hosoi, S.; Isida,
K.; Sangai, M. Chem. Pharm. Bull. 1994, 42, 204.
(k) Tsuda, Y.; Hosoi, S.; Katagiri, N.; Kaneko, C.; Sano, T.
Chem. Pharm. Bull. 1993, 41, 2087.
(3) Throughout this work, the commonly accepted erythrinan
numbering is used. See: Boekelheide, V.; Prelog, V. In
Progress in Organic Chemistry, Vol. 3; Cook, J. W., Ed.;
Butterworths Scientific: London, 1955, Chap. 5, see also ref.
1.
(4) Yasui, Y.; Koga, Y.; Suzuki, K.; Matsumoto, T. Synlett
2004, DOI: 10.1055/s-2004-817753.
(5) For reviews, see: (a) Bringmann, G.; Breuning, M.; Tasler,
S. Synthesis 1999, 525. (b) Gant, T. G.; Meyers, A. I.
Tetrahedron 1994, 50, 2297. (c) For recent examples, see:
Broutin, P.-E.; Colobert, F. Org. Lett. 2003, 5, 3281.
(d) Baudoin, O.; Décor, A.; Cesario, M.; Guéritte, F. Synlett
2003, 2009. (e) See also: Anderson, J. C.; Cran, J. W.; King,
N. P. Tetrahedron Lett. 2003, 44, 7771. (f) Kamikawa, K.;
Sakamoto, T.; Tanaka, Y.; Uemura, M. J. Org. Chem. 2003,
68, 9356. (g) Matsumoto, T.; Konegawa, T.; Nakamura, T.;
Suzuki, K. Synlett 2002, 122. (h) Shimada, T.; Cho, Y.-H.;
Hayashi, T. J. Am. Chem. Soc. 2002, 124, 13396.
(6) All new compounds were fully characterized by 1H and 13
NMR, IR and combustion analysis. Data for the selected
C
compounds follow. [*The specific rotation is shown for (+)-
6 and for each isomer derived from (+)-6. See ref. 9 and ref.
14] Compound 6: [a]D28 +20.5 (c 1.12, CHCl3)*. 1H NMR
(CDCl3): d = 7.46–7.36 (m, 5 H), 6.97 (s, 1 H), 6.86 (s, 1 H),
6.54 (s, 1 H), 6.01 (s, 1 H), 5.15 (s, 2 H), 3.93 (s, 3 H), 3.82
(s, 3 H), 3.73–3.55 (m, 4 H), 2.60–2.45 (m, 4 H), 1.35 (br, 1
H), 0.97 (s, 21 H). 13C NMR (CDCl3): d = 148.4, 147.3,
145.2, 141.8, 135.9, 134.2, 131.8, 130.0, 128.8, 128.5,
128.4, 127.9, 113.5, 113.2, 112.4, 111.5, 71.4, 63.8, 62.6,
55.8, 55.7, 37.6, 36.2, 17.9, 11.8. IR (NaCl): 3515, 2940,
(7) (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun.
1981, 11, 513. (b) Watanabe, T.; Miyaura, N.; Suzuki, A.
Synlett 1992, 207. (c) For a review, see: Miyaura, N.;
Suzuki, A. Chem. Rev. 1995, 95, 2457.
(8) Attempts to remove the MOM group from alcohol 4 led to
concomitant desilylation.
(9) We converted both isomers of 6 to O-methyleryso-
dienone(1). The absolute configuration of each intermediate
Synlett 2004, No. 4, 619–622 © Thieme Stuttgart · New York