Notes and references
1 K. Nakanishi, Pure Appl. Chem., 1991, 63, 161.
2 K. J. Hellingwerf, J. Hendriks and T. Gensch, J. Phys. Chem. A, 2003,
107, 1082.
3 M. Yoda, H. Houjou, Y. Inoue and M. Sakurai, J. Phys. Chem. B,
2001, 105, 9887.
4 A. R. Kroon, W. D. Hoff, H. P. M. Fenneman, J. Gijzen, G. J. Koomen,
J. W. Verhoeven, W. Crielaard and K. J. Hellingwerf, J. Biol. Chem.,
1996, 271, 31949.
5 M. Yoda, Y. Inoue and M. Sakurai, J. Phys. Chem. B, 2003, 107, 14569.
6 J. E. H. Buston, J. R. Young and H. L. Anderson, Chem. Commun.,
2000, 905; M. R. Craig, M. G. Hutchings, T. D. W. Claridge and H. L.
Anderson, Angew. Chem., Int. Ed., 2001, 40, 1071; J. E. H. Buston,
F. Marken and H. L. Anderson, Chem. Commun., 2001, 1046; P. N.
Taylor,A.J.HaganandH.L.Anderson,Org.Biomol.Chem.,2003,1,3851.
7 M. van den Boogaard, G. Bonnet, P. van ’t Hof, Y. Wang, C. Brochon,
P. van Hutten, A. Lapp and G. Hadziioannou, Chem. Mater., 2004, 16,
4383.
Fig. 4 UV-Vis absorption spectra of protonated and deprotonated
forms of 4 and 5 in methanol : water, 3 : 2.
thioester in PYP. Rotaxane 5 does not contain charged groups, so
the observed stabilization of the excited state of the anion results
from dispersion interactions.
8 E. Arunkumar, C. C. Forbes, B. C. Noll and B. D. Smith, J. Am. Chem.
Soc., 2005, 127, 3288; E. Arunkumar, C. C. Forbes and B. D. Smith,
Eur. J. Org. Chem., 2005, 4051.
9 We have previously used a similar coumaric amide unit as a macrocycle
binding site in an anion-switchable molecular shuttle, see: C. M.
Keaveney and D. A. Leigh, Angew. Chem., Int. Ed., 2004, 43, 1222.
10 F. G. Gatti, D. A. Leigh, S. A. Nepogodiev, A. M. Z. Slawin, S. J. Teat
and J. K. Y. Wong, J. Am. Chem. Soc., 2001, 123, 5983.
11 J. S. Hannam, T. J. Kidd, D. A. Leigh and A. J. Wilson, Org. Lett.,
2003, 5, 1907.
12 A. R. Kroon, W. D. Hoff, H. P. M. Fennema, J. Gijzen, G. J. Koomen,
J. W. Verhoeven, W. Crielaard and K. J. Hellingwerf, J. Biol. Chem.,
1996, 271, 31949.
13 F. Biscarini, M. Cavallini, D. A. Leigh, S. Leo´n, S. J. Teat, J. K. Y. Wong
and F. Zerbetto, J. Am. Chem. Soc., 2002, 124, 225; G. Brancato,
F. Coutrot, D. A. Leigh, A. Murphy, J. K. Y. Wong and F. Zerbetto,
Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4967; G. Bottari, F. Dehez,
D. A. Leigh, P. J. Nash, E. M. Pe´rez, J. K. Y. Wong and F. Zerbetto,
Angew. Chem., Int. Ed., 2003, 42, 5886; T. Da Ros, D. M. Guldi,
A. Farran Morales, D. A. Leigh, M. Prato and R. Turco, Org. Lett.,
2003, 5, 689; E. M. Pe´rez, D. T. F. Dryden, D. A. Leigh, G. Teobaldi
and F. Zerbetto, J. Am. Chem. Soc., 2004, 126, 12210; J. S. Hannam,
S. M. Lacy, D. A. Leigh, C. G. Saiz, A. M. Z. Slawin and S. G. Stitchell,
Remarkably, irradiation of solutions of 4 and 5 in their
deprotonated form did not result in significant changes in
absorption or emission spectra. This means that photoisomerisa-
tion is strongly suppressed under these conditions, in contrast to
the behaviour of the neutral molecules in dichloromethane.21 We
did not quantitatively determine the fluorescence intensities or
decay times of the anions of 4 and 5 in water/methanol, but
qualitatively their fluorescence is more intense than that of the
neutral forms in dichloromethane, but still weak. Since photo-
isomerisation of the anions does not occur under these conditions,
other rapid nonradiative decay processes must dominate the
photophysics. Similar observations have previously been made for
coumaric thioesters, which undergo efficient photoisomerisation
when in PYP (WEZ = 0.35),22 but not on their own in solution. An
explanation for this effect was offered by Groenhof et al, who
found computationally that the difference in behaviour is caused
by the influence of the protein, which moves the position of the
conical intersection along the CLC twisting coordinate to an
accessible part of the potential energy surface.23 Although this is an
elegant and significant idea, it does not explain why those model
compounds that do not efficiently undergo photoisomerisation still
have very short-lived excited states. It has been suggested that in
coumaric acid derivatives there is competition between productive
double bond rotation and unproductive rotation about single
bonds,20,24 which depends in a subtle way on the precise chemical
structure and environment.16,17,20,24 One such difference exists
between the secondary amides in the present work, and the simple
primary amide studied by Changenet-Barret et al., which does
undergo photoisomerisation.25 Our results indicate that strong
hydrogen bonding to ArO2, which occurs in the anion of 5 as well
as in the photoactive protein, is not in itself sufficient to induce
efficient photoisomerisation of the olefin of a deprotonated
coumaric residue.
´
Angew. Chem., Int. Ed., 2004, 43, 3260; D. A. Leigh, M. A. F. Morales,
E. M. Pe´rez, J. K. Y. Wong, C. G. Saiz, A. M. Z. Slawin,
A. J. Carmichael, D. M. Haddleton, A. M. Brouwer, W. J. Buma,
G. W. H. Wurpel, S. Leo´n and F. Zerbetto, Angew. Chem., Int. Ed.,
2005, 44, 3062.
14 D. S. Larsen and R. van Grondelle, ChemPhysChem, 2005, 6, 828.
15 N. Mataga, H. Chosrowjan, Y. Shibata, Y. Imamoto and F. Tokunaga,
J. Phys. Chem. B, 2000, 104, 5191.
16 A. Espagne, D. H. Paik, P. Changenet-Barret, M. M. Martin and
A. H. Zewail, ChemPhysChem, 2006, 7, 1717.
17 A. Espagne, P. Changenet-Barret, P. Plaza and M. M. Martin, J. Phys.
Chem. A, 2006, 110, 3393.
18 K. Heyne, O. F. Mohammed, A. Usman, J. Dreyer, E. T. J. Nibbering
and M. A. Cusanovich, J. Am. Chem. Soc., 2005, 127, 18100.
19 M. Vengris, D. S. Larsen, M. A. van der Horst, O. F. A. Larsen, K. J.
Hellingwerf and R. van Grondelle, J. Phys. Chem. B, 2005, 109, 4197.
20 H. El-Gezawy, W. Rettig, A. Danel and G. Jonusauskas, J. Phys. Chem.
B, 2005, 109, 18699.
21 A. M. Brouwer, S. M. Fazio, N. Haraszkiewicz, D. A. Leigh and C. M.
Lennon, Photochem. Photobiol. Sci., 2007, 6, DOI: 10.1039/b618795a.
22 J. Hendriks, I. H. M. van Stokkum, W. Crielaard and K. J. Hellingwerf,
FEBS Lett., 1999, 458, 252.
23 G. Groenhof, M. Bouxin-Cademartory, B. Hess, S. P. De Visser,
H. J. C. Berendsen, M. Olivucci, A. E. Mark and M. A. Robb, J. Am.
Chem. Soc., 2004, 126, 4228.
24 D. S. Larsen, M. Vengris, I. H. M. van Stokkum, M. A. van der Horst,
R. A. Cordfunke, K. J. Hellingwerf and R. van Grondelle, Chem. Phys.
Lett., 2003, 369, 563–569.
We thank the Netherlands Foundation for Scientific Research
(NWO), the Netherlands Research School Combination Catalysis,
the EPSRC and the EU project Hy3M for financial support of this
research, and Professors J.W. Verhoeven and K.J. Hellingwerf for
helpful discussions. DAL is an EPSRC Senior Research Fellow
and holds a Royal Society-Wolfson research merit award.
25 P. Changenet-Barret, A. Espagne, S. Charier, J. B. Baudin, L. Jullien,
P. Plaza, K. J. Hellingwerf and M. M. Martin, Photochem. Photobiol.
Sci., 2004, 3, 823.
1912 | Chem. Commun., 2007, 1910–1912
This journal is ß The Royal Society of Chemistry 2007