ORGANIC
LETTERS
2004
Vol. 6, No. 8
1329-1331
Application of Intramolecular Enyne
Metathesis to the Synthesis of
Aza[4.2.1]bicyclics: Enantiospecific
Total Synthesis of (+)-Anatoxin-a
Jehrod B. Brenneman and Stephen F. Martin*
Department of Chemistry and Biochemistry, The UniVersity of Texas,
Austin, Texas 78712
Received February 29, 2004
ABSTRACT
A concise synthesis of the potent nAChR agonist (+)-anatoxin-a (1) has been completed in a series of only nine chemical operations and 27%
overall yield from commercially available D-methyl pyroglutamate (4). The synthesis features a novel procedure for the diastereoselective
preparation of cis-2,5-disubstituted pyrrolidines leading to 10, which underwent an intramolecular enyne metathesis to afford a bridged azabicyclic
intermediate that was transformed into 1.
(+)-Anatoxin-a (1), which was isolated from the toxic
blooms of the blue-green freshwater algae Anabaena flos-
aquae (Lyngb.) de Bre´b, is one of the most potent nicotinic
acetylcholine receptor (nAChR) agonists known.1 Also
referred to as “very fast death factor” (VFDF), 1 has been
shown to resist enzymatic degradation by acetylcholine
esterase, resulting in respiratory paralysis and eventual death.2
Despite its toxicity, 1 has emerged as a valuable chemical
probe for elucidating the mechanism of acetylcholine-
mediated neurotransmission and the disease states associated
with abnormalities in this important signaling pathway.
Consequent to its potent pharmacological profile and unique
9-azabicyclo[4.2.1]nonane skeleton, 1 has remained an
attractive synthetic target since its isolation in 1977.3 A
variety of nonlethal analogues that contain the 9-azabicyclo-
[4.2.1]nonane skeleton have recently been identified as
potential therapeutic targets for treating neurological disor-
ders such as Alzheimer’s and Parkinson’s diseases, schizo-
phrenia, and depression.4
Our interest in (+)-anatoxin-a (1) arose as a result of our
ongoing efforts to develop ruthenium-catalyzed ring-closing
(3) For the most recent syntheses, see: (a) Wegge, T.; Schwarz, S.; Seitz,
G. Tetrahedron: Asymmetry 2000, 11, 1405. (b) Parsons, P. J.; Camp, N.
P.; Edwards, N.; Sumoreeah, L. R. Tetrahedron 2000, 56, 309. (c) Aggarwal,
V. K.; Humphries, P. S.; Fenwick, A. Angew. Chem., Int. Ed. 1999, 38,
1985. (d) Trost, B. M.; Oslob, J. D. J. Am. Chem. Soc. 1999, 121, 3057.
(e) Oh, C.-Y.; Kim, K.-S.; Ham, W.-H. Tetrahedron Lett. 1998, 39, 2133.
For a review of earlier syntheses, see: (f) Mansell, H. L. Tetrahedron 1996,
52, 6025.
(4) (a) Karig, G.; Large, J. M.; Sharples, C. G. V.; Sutherland, A.;
Gallagher, T.; Wonnacott, S. Biorg. Med. Chem. Lett. 2003, 13, 2825. (b)
Sutherland, A.; Gallagher, T.; Sharples, C. G. V.; Wonnacott, S. J. Org.
Chem. 2003, 68, 2475. (c) Gohlke, H.; Schwarz, S.; Gu¨ndisch, D.; Tilotta,
M. C.; Weber, A.; Wegge, T.; Seitz, G. J. Med. Chem. 2003, 46, 2031. (d)
Sharples, C. V. G.; Karig, G.; Simpson, G. L.; Spencer, J. A.; Wright, E.;
Millar, N. S.; Wonnacott, S.; Gallagher, T. J. Med. Chem. 2002, 45, 3235.
(e) Gohlke, H.; Gu¨ndisch, D.; Schwarz, S.; Seitz, G.; Tilotta, M. C.; Wegge,
T. J. Med. Chem. 2002, 45, 1064. (f) Gu¨ndisch, D.; Ka¨mpchen, T.; Schwarz,
S.; Seitz, G.; Siegl, J.; Wegge, T. Biorg. Med. Chem. 2002, 10, 1. (g)
Sharples, C. V. G.; Kaiser, S.; Soliakov, L.; Marks, M. J.; Collins, A. C.;
Washburn, M.; Wright, E.; Spencer, J. A.; Gallagher, T.; Whiteaker, P.;
Wonnacott, S. J. Neurosci. 2000, 20, 2783. (h) Wright, E.; Gallagher, T.;
Sharples, C. V. G.; Wonnacott, S. Biorg. Med. Chem. Lett. 1997, 7, 2867.
(i) Sardina, F. J.; Howard, M. H.; Koskinen, A. M. P.; Rapoport, H. J.
Org. Chem. 1989, 54, 4654.
(1) Devlin, J. P.; Edwards, O. E.; Gorham, P. R.; Hunter, N. R.; Pike,
R. K. Can. J. Chem. 1977, 55, 1367.
(2) (a) Carmichael, W. W.; Biggs, D. F.; Gorham, P. R. Science 1975,
187, 542. (b) Spivak, C. E.; Witkop, B.; Albuquerque, E. X. Mol.
Pharmacol. 1980, 18, 384.
10.1021/ol049631e CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/23/2004