646
P. Bakó et al.
LETTER
H-6), 3.55–3.98 (m, 18 H, OCH2, H-2, H-3, H-4, H-5), 3.37
(s, 3 H, OCH3), 2.78 (t, 6 H, CH2N). FAB–MS: 484 [M+ +
H], 506 [M+ + Na]. For 2b: [a]D20 +15.0 (c = 1, CHCl3).
Acknowledgement
This work was supported by the National Science Foundation (OT-
KA T 042514).
20
FAB–MS: 498 [M+ + H], 520 [M+ + Na]. For 2c: [a]D
+19.6 (c = 1, CHCl3). 1H NMR: d = 7.39 (d, 2 H, ArH), 7.27
(t, 3 H, ArH), 5.52 (s, 1 H, benzylidene-CH), 4.67 (s, 1 H,
anomer-H), 4.16 (q, J = 10.1 Hz, 1 H, H-6), 4.02 (t, J = 9.6
Hz, 1 H, H-6), 3.45–3.95 (m, 18 H, OCH2, H-2, H-3, H-4, H-
5), 3.31 (s, 3 H, OCH3), 3.24 (t, 3 H, OCH3), 2.72 (t, 4 H,
CH2N), 2.56 (t, 2 H, CH2N), 1.69 (m, 2 H, CH2). FAB–MS:
512 [M+ + H], 534 [M+ + Na]. For 2d: [a]D20 +18.8 (c = 1,
CHCl3). 1H NMR: d = 7.71 (d, 2 H, tosyl-ArH), 7.49 (d, 2 H,
tosyl-ArH), 7.38 (d, 2 H, ArH), 7.32 (t, 3 H, ArH), 5.62 (s, 1
H, benzylidene-CH), 4.74 (s, 1 H, anomer-H), 4.26 (q, J =
10.1 Hz, 1 H, H-6), 4.12 (t, J = 9.6 Hz, 1 H, H-6), 3.51–4.00
(m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.40 (s, 3 H, OCH3),
3.20–3.26 (m, 4 H, CH2N), 2.44 (s, 3 H, CH3). FAB–MS:
594 [M+ + H], 616 [M+ + Na]. For 2e: [a]D20 +26.3 (c = 1,
CHCl3). 1H NMR: d = 7.47 (d, 2 H, ArH), 7.35 (t, 3 H, ArH),
5.60 (s, 1 H, benzylidene-CH), 4.78 (s, 1 H, anomer-H), 4.25
(q, J = 10.1 Hz, 1 H, H-6), 4.14 (t, J = 9.6 Hz, 1 H, H-6),
3.55–4.08 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.39 (s, 3
H, OCH3), 2.85 (t, 2 H, CH2N), 2.76 (t, 2 H, CH2N), 2.55 (m,
1 H, NH). FAB–MS: 440 [M+ + H], 462 [M+ + Na].
References
(1) (a) O’Donnell, M. I. In Catalytic Asymmetric Synthesis,
Asymmetric Phase-Transfer Reactions, 2nd ed.; Ojima, I.,
Ed.; Wiley: New York, 2000, 727. (b) Comprehensive
Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer: New York, 1999, 241.
(2) (a) Stoddart, J. F. Top. Stereochem. 1987, 17, 207.
(b) Miethchen, R.; Fehring, V. Synthesis 1998, 94; and
references cited therein.
(3) Bakó, P.; Czinege, E.; Bakó, T.; Czugler, M.; Tőke, L.
Tetrahedron: Asymmetry 1999, 10, 4539; and references
cited therein.
(4) (a) Novák, T.; Tatai, J.; Bakó, P.; Czugler, M.; Keglevich,
Gy.; Tőke, L. Synlett 2001, 424. (b) Bakó, T.; Bakó, P.;
Szöllősy, Á.; Czugler, M.; Keglevich, Gy.; Tőke, L.
Tetrahedron: Asymmetry 2002, 13, 203.
(5) For recent review, see: (a) Porter, M. J.; Roberts, S. M.;
Skidmore, J. Bioorg. Med. Chem. 1999, 7, 2145. (b) Banfi,
S.; Colonna, S.; Molinari, H.; Juliá, S.; Guixer, J.
(12) General Procedure for the Epoxidation of Chalcones:
Chalcone (1.44 mmol) and the crown ether (0.1 mmol) were
dissolved in 3 mL of toluene and 1 mL of 20% aq NaOH was
added maintaining the temperature at 5 °C with ice water.
Then 0.5 mL of tert-butylhydroperoxide (5.5 M decane
solution, 2.88 mmol) was added and the mixture stirred at 5
°C. After completing the reaction (1–48 h), a mixture of 7
mL of toluene and 10 mL of water was added. The organic
phase was dried (Na2SO4) and concentrated in vacuo. The
crude product was purified on silica gel by preparative TLC
with hexane–EtOAc (10:1) as eluent, for 7a [a]D = –196 (c =
1, CH2Cl2, 20 °C) with 92% ee (lit., [a]D –214 for the pure
enantiomer);10 mp 64–66 °C (EtOH). 1H NMR (CDCl3): d =
8.02 (d, 2 H, o-COPh-H), 7.63 (t, 1 H, p-COPh-H), 7.50 (t, 2
H, m-COPh-H), 7.38–7.44 (m, 5 H, CHPh-H), 4.30 (d, J =
1.9 Hz, 1 H, COCH), 4.09 (d, J = 1.9 Hz, 1 H, PhCH). For
7c: [a]D = –167.9 (c = 1, CH2Cl2, 20 °C) with 82% ee; mp 81
°C (EtOH). 1H NMR: d = 8.01 (d, 2 H, o-COPh-H), 7.39 (m,
5 H, CHPh-H), 6.95 (d, 2 H, m-COPh-H), 4.25 (d, J = 1.7 Hz,
1 H, COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH), 3.87 (s, 3 H,
OCH3). For 7d: [a]D = –156.1 (c = 1, CH2Cl2, 20 °C) with
80% ee; mp 121 °C (EtOH). 1H NMR: d = 7.96 (d, 2 H, o-
COPh-H), 7.46 (d, 2 H, m-COPh-H), 7.40 (t, 3 H, m,p-
CHPh-H), 7.36 (d, 2 H, o-CHPh-H), 4.23 (d, J = 1.6 Hz, 1 H,
COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH).
Tetrahedron 1984, 40, 5207. (c) Lygo, B.; Wainwright, P.
G. Tetrahedron 1999, 55, 6289. (d) Corey, E. J.; Zhang, F.-
Y. Org. Lett. 1999, 1, 1287. (e) Arai, S.; Tsuge, H.; Shioiri,
T. Tetrahedron Lett. 1998, 39, 7563. (f) Enders, D.; Zhu, J.;
Raabe, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1725.
(g) Enders, D.; Kramps, L.; Zhu, J. Tetrahedron: Asymmetry
1998, 9, 3959. (h) Yamada, K.; Arai, T.; Sasai, H.;
Shibasaki, M. J. Org. Chem. 1998, 63, 3666. (i) Watanabe,
S.; Arai, T.; Sasai, H.; Bougauchi, M.; Shibasaki, M. J. Org.
Chem. 1998, 63, 8090.
(6) Bakó, P.; Tőke, L. J. Incl. Phenom. 1995, 23, 195.
(7) Di Cesare, P.; Gross, B. Synth. Commun. 1979, 4581.
(8) Marsman, B.; Wynberg, H. J. Org. Chem. 1979, 44, 2312.
(9) Washington, I.; Houk, K. N. Org. Lett. 2002, 4, 2661.
(10) Juliá, S.; Guixer, J.; Masana, J.; Rocas, J.; Colonna, S.;
Annuziata, R. J. Chem. Soc., Perkin Trans. 1 1982, 1317.
(11) Selected data for 5: [a]D20 +18.0 (c = 1, CHCl3). 1H NMR:
d = 7.47 (d, 2 H, ArH), 7.36 (t, 3 H, ArH), 5.59 (s, 1 H,
benzylidene-CH), 4.78 (s, 1 H, anomer-H), 4.24 (q, J = 10.1
Hz, 1 H, H-6), 4.06 (t, J = 9.6 Hz, 1 H, H-6), 3.66–4.00 (m,
16 H, OCH2, H-2, H-3, H-4, H-5), 3.38 (s, 3 H, OCH3), 3.26
(t, 2 H, CH2I), 3.18 (t, 2 H, CH2I). For 2a: [a]D20 +16.0 (c =
1, CHCl3). 1H NMR: d = 7.48 (d, 2 H, ArH), 7.35 (t, 3 H,
ArH), 5.30 (s, 1 H, benzylidene-CH), 4.75 (s, 1 H, anomer-
H), 4.24 (q, J = 10.1 Hz, 1 H, H-6), 4.11 (t, J = 9.6 Hz, 1 H,
Synlett 2004, No. 4, 643–646 © Thieme Stuttgart · New York