LETTER
Novel Synthesis of Fused Indoles
909
1) Br
CO2Et
References
Bs
K2CO3, acetone
60 °C, 2 days (100%)
(1) (a) Handbook of Organopalladium Chemistry for Organic
Synthesis, Vol. I and II; Negishi, E., Ed.; John Wiley and
Sons, Inc.: New York, 2002. (b) Li, J. J.; Gribble, G. W.
Palladium in Heterocyclic Chemistry; Elsevier Science Ltd.:
Oxford, 2000.
N
H2NBs
O
2) t-BuOK, PhMe,
(Bs = SO2Ph)
reflux, 25 h (33%)
EtO2C
11
I
(2) Mori, M.; Ban, Y. Tetrahedron Lett. 1977, 18, 1037.
(3) Synthesis of indoles by palladium-catalyzed cyclization of
N-alkenyl-o-haloanilines, see: (a) Caddick, S.; Kofie, W.
Tetrahedron Lett. 2002, 43, 9347. (b) Michael, J. P.; de
Koning, C. B.; Petersen, R. L.; Stanbury, T. V. Tetrahedron
Lett. 2001, 42, 7513. (c) Latham, E. J.; Stanforth, S. P. J.
Chem. Soc, Perkin Trans. 1 1997, 2059. (d) Blache, Y.;
Sinibaldi-Troin, M.-E.; Voldoire, A.; Chavignon, O.;
Gramain, J.-C.; Teulade, J.-C.; Chapat, J.-P. J. Org. Chem.
1997, 62, 8553. (e) Chen, L. C.; Yang, S. C.; Wang, H. M.
Synthesis 1995, 385. (f) Michael, J. P.; Chang, S.-F.;
Wilson, C. Tetrahedron Lett. 1993, 34, 8365. (g)Sakamoto,
T.; Nagano, T.; Kondo, Y.; Yamanaka, H. Synthesis 1990,
215. (h) Kasahara, A.; Izumi, T.; Murakami, S.; Yanai, H.;
Takatori, M. Bull. Chem. Soc. Jpn. 1986, 59, 927. (i) Iida,
H.; Yuasa, Y.; Kibayashi, C. J. Org. Chem. 1980, 45, 2938.
(4) (a) Sato, Y.; Watanabe, S.; Shibasaki, M. Tetrahedron Lett.
1992, 33, 2589. (b) Sato, Y.; Honda, T.; Shibasaki, M.
Tetrahedron Lett. 1992, 33, 2593. (c) Sato, Y.; Nukui, S.;
Sodeoka, M.; Shibasaki, M. Tetrahedron 1994, 50, 371.
(5) While other silver salts, such as Ag2CO3, AgPF6, AgOTf,
and AgBF4, also promoted this reaction, they were less
effective.
I
Bs
N
NH2
(2 equiv)
N
p-TsOH (1 equiv)
PhH
H
CO2Et
12 (58%)
reflux, 4 d
Bs
N
Pd(PPh3)4
(10 mol%)
Ag3PO4 (1 eq)
N
DMSO, 100 °C
18 h
CO2Et
H
13 (69%)
Scheme 4
We were also interested in the synthesis of these alkaloids
and applied our new cyclization to synthesize the azocino-
indole skeleton 13 (Scheme 4). Thus, azocine derivative
11,8 which was prepared from benzenesulfonamide in two
steps, was condensed with o-iodoaniline to give enamine
12 in 58% yield. Enamine 12 was converted to azocino-
indole 139 in 69% yield under the optimized conditions
described above.
(6) Awang, K.; Sévenet, T.; Païs, M.; Hadi, A. H. A. J. Nat.
Prod. 1993, 56, 1134.
(7) Pearson, W. H.; Mi, Y.; Lee, I. Y.; Stoy, P. J. Am. Chem.
Soc. 2001, 123, 6724.
(8) Lennon, M.; Proctor, G. R. J. Chem. Soc., Perkin Trans. 1
1979, 2009.
In conclusion, we have developed a new type of palladi-
um-catalyzed cyclization, which proceeds via selective
isomerization of a double bond in the enamine structure
followed by 5-endo cyclization. This reaction is useful for
synthesizing fused indoles.
(9) Experimental Procedure for the Synthesis of 13: A
mixture of enamine 12 (0.15 g, 0.28 mmol), Ag3PO4 (0.12 g,
0.28 mmol), and Pd(PPh3)4 (32 mg, 28 mmol) was heated (18
h) with stirring in DMSO (1.0 mL) at 100 °C under Ar. The
mixture was diluted with Et2O at r.t., and filtered through a
celite pad. The filtrate was concentrated and the residue was
purified by silica gel column chromatography (EtOAc:n-
hexane, 1:5) to give 13 as a colorless oil (79 mg, 69%). 1H
NMR (600 MHz, CDCl3): d = 1.35 (t, J = 7.1 Hz, 3 H), 1.87
(td, J = 2.8, 12.9 Hz, 1 H), 2.18 (ddd, J = 3.9, 12.6, 14.8 Hz,
1 H), 2.56 (t, J = 12.1 Hz, 1 H), 2.66 (tt, J = 5.0, 12.9 Hz, 1
H), 2.94 (ddd, J = 3.0, 12.1, 15.1 Hz, 1 H), 3.13 (ddd,
J = 1.4, 3.6, 15.1 Hz, 1 H), 3.48 (dd, J = 4.1, 15.1 Hz, 1 H),
4.12 (dt, J = 3.9, 13.2 Hz, 1 H), 4.24–4.32 (m, 2 H), 4.37 (dd,
J = 5.2, 12.7 Hz, 1 H), 7.06 (td, J = 1.1, 7.1 Hz, 1 H), 7.13
(td, J = 1.1, 8.0 Hz, 1 H), 7.33 (d, J = 8.0 Hz, 1 H), 7.42 (d,
J = 8.0 Hz, 1 H), 7.47 (td, J = 1.4, 7.7 Hz, 2 H), 7.54 (tt,
Acknowledgment
This research was supported by a Grant-in-Aid for Scientific Re-
search on Priority Areas (A) ‘Exploitation of Multi-Element Cyclic
Molecules’ and a Grant-in-Aid for Exploratory Research from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan. Financial support from The Uehara Memorial Foundation
and The Naito Foundation is also gratefully acknowledged.
J = 1.4, 7.2 Hz, 1 H), 7.78–7.80 (m, 2 H), 9.11 (s, 1 H). 13
C
NMR (150 MHz, CDCl3): d = 14.3, 25.8, 36.5, 39.4, 48.5,
53.7, 61.6, 111.2, 111.3, 117.6, 119.5, 121.9, 127.0, 129.2,
130.9, 132.7, 135.5, 139.1, 174.8.
Synlett 2004, No. 5, 907–909 © Thieme Stuttgart · New York